
Adaptive Server™
Specialty Data Store™

Developer’s Kit

SDK Release 11.5

Document ID: 30508-01-1150-01

Last Revised: June 13, 1997

Principal author: Jim Cluett and Lori Johnson

Document ID: 30508-01-1150

This publication pertains to SDK Release 11.5 of the Sybase database management
software and to any subsequent release until otherwise indicated in new editions
or technical notes. Information in this document is subject to change without
notice. The software described herein is furnished under a license agreement, and
it may be used or copied only in accordance with the terms of that agreement.

Document Orders

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the above fax number. All other international customers should
contact their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

Copyright © 1989–1997 by Sybase, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise,
without the prior written permission of Sybase, Inc.

Sybase Trademarks

Sybase, the Sybase logo, APT-FORMS, Certified SYBASE Professional, Data
Workbench, Deft, First Impression, GainExposure, Gain Momentum, PowerBuilder,
Powersoft, Replication Server, S-Designor, SQL Advantage, SQL Debug, SQL
SMART, SQL Solutions, Transact-SQL, VisualWriter, and VQL are registered
trademarks of Sybase, Inc. Adaptable Windowing Environment, Adaptive Server,
ADA Workbench, AnswerBase, Application Manager, AppModeler, APT-Build,
APT-Edit, APT-Execute, APT-Library, APT-Translator, APT Workbench, Backup
Server, BayCam, Bit-Wise, Client-Library, Client/Server Architecture for the
Online Enterprise, Client/Server for the Real World, Client Services, CodeBank,
Column Design, Connection Manager, DataArchitect, Database Analyzer,
DataExpress, Data Pipeline, DataWindow, DB-Library, Deft Analyst, Deft
Designer, Deft Educational, Deft Professional, Deft Trial, Designor, Developers
Workbench, Dimensions Anywhere, Dimensions Enterprise, Dimensions Server,
DirectCONNECT, Easy SQR, Embedded SQL, EMS, Enterprise Builder, Enterprise
Client/Server, Enterprise CONNECT, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise
Work Modeler, EWA, Formula One, Gateway Manager, GeoPoint, InfoMaker,
InformationCONNECT, Intermedia Server, InternetBuilder, iScript,
KnowledgeBase, MainframeCONNECT, Maintenance Express, MAP, MDI, MDI
Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet,
Movedb, Navigation Server Manager, Net-Gateway, NetImpact, Net-Library, New
Media Studio, ObjectCONNECT, ObjectCycle, OmniCONNECT, OmniSQL
Access Module, OmniSQL Server, OmniSQL Toolkit, Open Client, Open

ClientCONNECT, Open Client/Server, Open Client/Server Interfaces, Open
Gateway, Open Server, Open ServerCONNECT, Open Solutions, Optima++, PB-
Gen, PC APT-Execute, PC DB-Net, PC Net Library, PowerBuilt, PowerBuilt with
PowerBuilder, PowerScript, PowerSocket, Powersoft Portfolio, Power Through
Knowledge, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Replication Agent, Replication Driver, Replication Server Manager, Report-
Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library,
SAFE, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS,
smart.partners, smart.parts, smart.script, SQL Anywhere, SQL Central, SQL Code
Checker, SQL Edit, SQL Edit/TPU, SQL Remote, SQL Server, SQL Server/CFT,
SQL Server/DBM, SQL Server Manager, SQL Server Monitor, SQL Server SNMP
SubAgent, SQL Station, SQL Toolset, StarDesignor, Sybase Client/Server
Interfaces, Sybase Development Framework, Sybase Dimensions, Sybase
Gateways, Sybase Intermedia, Sybase Interplay, Sybase IQ, Sybase MPP, Sybase
SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy
Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, SyBooks, System 10, System 11, the System XI logo, SystemTools,
Tabular Data Stream, The Architecture for Change, The Enterprise Client/Server
Company, The Online Information Center, Turning Imagination Into Reality,
Visual Components, VisualSpeller, Warehouse WORKS, Watcom, Watcom SQL,
Watcom SQL Server, web.sql, WebSights, WebViewer, WorkGroup SQL Server,
XA-Library, and XA-Server are trademarks of Sybase, Inc. 1/97

All other company and product names used herein may be trademarks or
registered trademarks of their respective companies.

Restricted Rights

Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth
in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Specialty Data Store Developer’s Kit v

Table of Contents

About This Book
Audience . xiii
How to Use This Book . xiii
Related Documents . xiii
Other Sources of Information . xiv

Electronic Information Sources. xiv
SupportPlus Online Services and SyBooks-on-the-Web. xiv

Conventions . xv
Formatting SQL Statements . xv
SQL Syntax Conventions. xv

Case . xvi
Obligatory Options {You Must Choose At Least One} xvi
Optional Options [You Don’t Have to Choose Any]. xvii
Ellipsis: Do It Again (and Again)... . xvii

If You Need Help . xvii

1. Introduction
What is a Specialty Data Store?. 1-1
What is the Specialty Data Store Developer’s Kit? . 1-1
Specialty Data Store Example . 1-2
Designing a Model for your Specialty Data Store . 1-3
Sample Specialty Data Store . 1-5

Using the filesds Specialty Data Store. 1-5
Installing the filesds Specialty Data Store . 1-5

Using the filesds Specialty Data Store to Access Data 1-7
Sample Program Information . 1-8

Sample Program Code. 1-8
Sample Data Structures . 1-8
Sample Modules. 1-9
Sample Configuration File . 1-11
Sample Parser . 1-11

Building a Specialty Data Store . 1-13
Milestone 1: connect to Command . 1-13
Milestone 2: Table Definition . 1-13
Milestone 3: Read-Only Access. 1-14
Milestone 4: Insert, Update, and Delete . 1-14

vi Table of Contents

SDK Release 11.5

Milestone 5: Text and Image Handling . 1-15
Milestone 6: Data Definition Language and Transaction Management 1-15

Specialty Data Store Components . 1-15
SRV_ATTENTION . 1-15
SRV_BULK. 1-15
SRV_CONNECT . 1-16
SRV_CURSOR . 1-16
SRV_DISCONNECT. 1-17
SRV_DYNAMIC . 1-17
SRV_LANGUAGE . 1-18
SRV_RPC . 1-18

Debugging a Specialty Data Store . 1-18

2. Interface Topics
Overview . 2-1
Adaptive Server Configuration . 2-1

Remote Server Definition . 2-1
Logging in to Remote Servers . 2-3

Remote Table Definition . 2-3
Defining the Storage Location of Individual Objects 2-3
Defining the Storage Location For All Database Objects 2-4
create [existing] table . 2-5

Specialty Data Store Connect Handling . 2-5
Connection Properties . 2-6
Non-negotiated Logins . 2-6
Negotiated Logins . 2-7

Specialty Data Store Capabilities. 2-8
SQL Syntax (101). 2-8
Join Handling (102) . 2-8
Aggregate Handling (103) . 2-8
and Predicates (104) . 2-9
or Predicates (105) . 2-9
like Predicates (106). 2-9
bulk insert Handling (107) . 2-10
text and image Handling (108) . 2-10
Transaction Handling (109) . 2-10
Text Pattern Handling (110). 2-10
order by (111). 2-11
group by (112) . 2-11
Net Password Encryption (113) . 2-11

Specialty Data Store Developer’s Kit vii

SDK Release 11.5

Object Name Case Sensitivity (114) . 2-11
distinct Handling (115) . 2-11
union Support (117). 2-12
String Functions (118). 2-12
Expression Handling (119) . 2-12
Truncate Blanks (120) . 2-13
Language Handling (121) . 2-13
Date Functions (122). 2-13
Math Functions (123) . 2-13
convert Function (124). 2-14
Transact-SQL delete/update (125) . 2-14
insert select (126) . 2-14
Subquery Support (127) . 2-14

Specialty Data Store Language Handling. 2-15
Specialty Data Store RPC Handling . 2-15

Catalog RPCs. 2-16
text and image Handling RPCs . 2-16
Administrative RPCs . 2-16
User-generated RPCs . 2-17

Specialty Data Store Cursor Handling . 2-17
Specialty Data Store Dynamic Event Handling. 2-18
Specialty Data Store Bulk Copy Handling . 2-18

bulk insert Into Table . 2-18
Bulk Copy Initialization . 2-19
Bulk Transfer. 2-19

Bulk Copy Events for text and image Data. 2-20
Specialty Data Store Thread Properties . 2-20
update and delete Handling . 2-21
Parameters . 2-21
Transaction Management . 2-22
Passthrough Mode . 2-23
Datatypes . 2-23

create table or alter table . 2-24
create existing table . 2-24
DML Statements . 2-24
Result Rows . 2-25

Error Handling and Messaging . 2-25

3. SQL Commands
alter table . 3-3

viii Table of Contents

SDK Release 11.5

begin transaction . 3-5
commit transaction . 3-6
create index . 3-7
create table . 3-9
delete (cursor). 3-11
delete (dynamic) . 3-13
drop index . 3-15
drop table . 3-16
insert (dynamic). 3-17
insert bulk . 3-19
prepare transaction . 3-20
readtext. 3-21
rollback transaction . 3-22
select . 3-23
truncate table . 3-26
update (cursor). 3-27
update (dynamic) . 3-29
writetext bulk . 3-31

4. Text and Image Handling
Supporting Text Pointers . 4-1

Specialty Data Store Support of Text Pointers . 4-2
Supporting Text Timestamps. 4-2
Specifying Text and Image Capabilities . 4-3

Text and Image Handling . 4-3
Text Pattern Handling . 4-4

Inserting text and image Data . 4-4
Data Inserted Based on the insert Command . 4-4
Data Inserted Based on the writetext Command . 4-4

Selecting text and image Data . 4-5
Selecting Data When Text Pointers Are Supported 4-5
Selecting Data When Text Pointers Are Not Supported 4-6

Updating text and image Data . 4-7
Data Updated Based on the update Command . 4-7
Data Updated Based on the writetext Command . 4-7

Pattern Matching on text Data . 4-7
Pattern Matching When Pattern Matching Is Supported 4-7
When Pattern Matching Is Not Supported . 4-8

Processing the char_length Function . 4-8

Specialty Data Store Developer’s Kit ix

SDK Release 11.5

Processing char_length When Text Pointers Are Supported 4-9
Processing char_length When Text Pointers Are Not Supported 4-9

Processing the datalength Function . 4-9
Processing datalength When Text Pointers Are Supported 4-10
Processing datalength When Text Pointers Are Not Supported 4-10

Processing the textvalid Function . 4-10

5. System and Catalog RPCs
Overview . 5-1
Introduction to Catalog Procedures . 5-1

Syntax and Optional Parameters . 5-2
sp_capabilities . 5-3
sp_char_length . 5-6
sp_columns . 5-7
sp_datalength . 5-10
sp_patindex . 5-11
sp_statistics . 5-13
sp_tables . 5-15
sp_textvalid . 5-17
sp_thread_props . 5-18
ODBC Datatypes . 5-19
Adaptive Server Datatypes . 5-20

Index

x Table of Contents

SDK Release 11.5

Specialty Data Store Developer’s Kit xi

List of Tables

Table 1: Syntax statement conventions ..xv
Table 1-1: Sample parser support of capabilities ..1-11
Table 1-2: Cursor commands sent to a Specialty Data Store ...1-16
Table 1-3: Dynamic SQL commands sent to a Specialty Data Store.......................................1-17
Table 2-1: Pattern matching characters supported by like ..2-9
Table 3-1: SQL commands..3-1
Table 4-1: sp_patindex parameters ...4-8
Table 4-2: sp_char_length parameters ..4-9
Table 4-3: sp_datalength parameters ..4-10
Table 4-4: sp_textvalid parameters ...4-11
Table 5-1: Command RPCs...5-1
Table 5-2: sp_capabilities result set ...5-3
Table 5-3: Results set for sp_columns ...5-8
Table 5-4: Results set for sp_statistics ...5-13
Table 5-5: Results set for sp_tables..5-16
Table 5-6: ODBC datatype codes ...5-19
Table 5-7: ODBC extended datatype codes..5-19
Table 5-8: Adaptive Server datatype codes..5-20

xii List of Tables

SDK Release 11.5

Specialty Data Store Developer’s Kit xiii

About This Book

This book describes the interface between the Adaptive Server™ sds
server class and an implementation of an Open Server™ application.
Although this book refers to Adaptive Server throughout, the rules
to build a Specialty Data Store™ that interfaces with OmniConnect™
are the same.

Audience

Read this book if you are responsible for developing and providing
Specialty Data Stores. This book is written for experienced Open
Server application developers.

How to Use This Book

This book is divided into the following chapters:

• Chapter 1, “Introduction,” defines a Specialty Data Store and
provides an overview of Open Server event handling.

• Chapter 2, “Interface Topics,” describes various interface topics,
including Specialty Data Store requirements for Open Server
event handling, error handling, and datatypes.

• Chapter 3, “Transact-SQL Commands,” describes the syntax of
the subset of Transact-SQL™ and DB2 SQL generated within
Adaptive Server and transmitted to a Specialty Data Store.

• Chapter 4, “Text and Image Handling,” describes the mechanism
used by Adaptive Server to handle text and image datatypes when
interacting with a Specialty Data Store.

• Chapter 5, “RPCs,” contains reference pages for system
administration, text and image and catalog RPCs, that are
generated by Adaptive Server.

Related Documents

The following manuals provide additional background. If you are
not familiar with Open Server and Adaptive Server, first study the
following manuals:

• SYBASE Open Server Server-Library/C Reference Manual

xiv About This Book

Other Sources of Information SDK Release 11.5

• SYBASE Open Client Client-Library/C Reference Manual

• Open Client and Open Server Common Libraries Reference Manual

• SYBASE Adaptive Server Reference Manual, Volumes 1 and 2.

• Component Integration Services User’s Guide for Sybase Adaptive
Server and OmniConnect

Other Sources of Information

Electronic Information Sources

For the most up-to-date information on Sybase® products, including
information on availability, certifications, bugs, and
troubleshooting, refer to Sybase’s electronic services:

• AnswerBase™, Sybase’s CD-ROM knowledge base

• Sybase OpenLine and PrivateLine, the Sybase forums on
CompuServe

• The SupportPlusSM Online Services and SyBooks-on-the-Web
World Wide Web pages

SupportPlus Online Services and SyBooks-on-the-Web

To get to SupportPlus Online Services and Sybooks-on-the-Web:

1. Connect to the Sybase home page: www.sybase.com.

2. Follow links to Services and Support.

3. Follow links to Sybase Enterprise Technical Support.

4. Follow links to SupportPlus Online Services or SyBooks-on-the-
Web.

SyBooks-on-the-Web is accessible to the public.

SupportPlus Online Services is intended for customer use only.
Therefore, you must register to access SupportPlus Online Services.

Specialty Data Store Developer’s Kit xv

SDK Release 11.5 Conventions

Conventions

Formatting SQL Statements

SQL is a free-form language: there are no rules about the number of
words you can put on a line or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a
new line. Clauses that have more than one part extend to additional
lines, which are indented.

SQL Syntax Conventions

The conventions for syntax statements in this manual are as follows:

• Syntax statements (displaying the syntax and all options for a
command) are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

Table 1: Syntax statement conventions

Key Definition

command Command names, command option names, utility
names, utility flags, and other keywords are in bold
Courier in syntax statements, and in bold Helvetica in
paragraph text.

variable Variables, or words that stand for values that you fill in,
are in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed
options is optional. Do not include brackets in your
option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the
options shown.

, The comma means you may choose as many of the
options shown as you like, separating your choices with
commas to be typed as part of the command.

xvi About This Book

Conventions SDK Release 11.5

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords,
italics for user-supplied words.

• Examples showing the use of Transact-SQL commands are
printed like this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------- ------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case

You can disregard case when you type keywords:

SELECT is the same as Select is the same as select

Adaptive Server’s sensitivity to the case (upper or lower) of database
objects, such as table names, and data depends on the sort order
installed on your Adaptive Server. Case sensitivity can be changed
for single-byte character sets by reconfiguring Adaptive Server’s sort
order. (See the System Administration Guide for more information.)

Obligatory Options {You Must Choose At Least One}

• Curly Braces and Vertical Bars: Choose one and only one
option.

{die_on_your_feet | live_on_your_knees |
live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Specialty Data Store Developer’s Kit xvii

SDK Release 11.5 If You Need Help

Optional Options [You Don’t Have to Choose Any]

• One Item in Square Brackets: You don’t have to choose it.

[anchovies]

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

• Square Brackets and Commas: Choose none, one, or more than
one option. If you choose more than one, separate your choices
with commas.

[extra_cheese, avocados, sour_cream]

Ellipsis: Do It Again (and Again)...

An ellipsis (...) means that you can repeat the last unit as many times
as you like. In this syntax statement, buy is a required keyword:

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

If You Need Help

Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve a problem using the
manuals or online help, ask a designated person at your site to
contact Sybase Technical Support.

xviii About This Book

If You Need Help SDK Release 11.5

Specialty Data Store Developer’s Kit 1-1

1 Introduction 1.

What is a Specialty Data Store?

A Specialty Data Store allows Adaptive Server clients to access
external data as if it were stored locally in the Adaptive Server. A
Specialty Data Store is an Open Server application designed to
interface with the Adaptive Server.

The Adaptive Server allows data from Specialty Data Stores to be
joined with data from the local server, a remote server, or with other
Specialty Data Stores. When a client sends a SQL statement to the
Adaptive Server, the server will parse the SQL and send each
Specialty Data Store the appropriate portion of the original
statement. The Adaptive Server then creates a result set based on the
results from all servers involved in the query. A Specialty Data Store
is only concerned about access to the data it manages.

The Specialty Data Store interface defines the behavior expected of a
Specialty Data Store. This includes a subset of SQL and a set of
remote procedure calls that will be generated by Adaptive Server.

What is the Specialty Data Store Developer’s Kit?

The Specialty Data Store Developer’s Kit (SDK) contains the
following items to assist developers in creating a Specialty Data
Store:

• This manual.

• A working sample Specialty Data Store program. This Specialty
Data Store allows a Unix or Windows NT file system to be
accessed through the Adaptive Server. Using this Specialty Data
Store you can:

- Search a file system for content

- Alter a file’s content using Transact-SQL

- Import files into the Adaptive Server

This example implements all of the major interfaces required for
a Specialty Data Store, and is structured so that it can be used as
the framework for a Specialty Data Store you design.

1-2 Introduction

Specialty Data Store Example SDK Release 11.5

One important piece of this example program is a generalized
Transact-SQL parser that can be used as is, or modified for your
specific requirements.

Specialty Data Store Example

In this example, the Specialty Data Store allows Adaptive Server
clients to access spreadsheet files. The Specialty Data Store presents
each spreadsheet to the Adaptive Server as if it were a Sybase table.
The columns and rows of the spreadsheet are mapped to a virtual
table that the Specialty Data Store presents to the Adaptive Server.
The Specialty Data Store maps each cell of the spreadsheet to an
Adaptive Server datatype. For example, a cell containing text will be
mapped to the char datatype. Cells containing decimal values will be
mapped to the decimal datatype.

The Adaptive Server client will see the spreadsheets in the Adaptive
Server system catalogs along with all of the tables actually stored in
the Adaptive Server. The client can perform most SQL operations on
the spreadsheet tables, and the spreadsheet tables can be used in join
operations between tables stored within the Adaptive Server, or
tables stored in other Specialty Data Stores.

Figure 1-1 shows how a Specialty Data Store allows access to
spreadsheets:

Figure 1-1: Specialty Data Store providing access to spreadsheet files

Results Results

Adaptive Server Specialty Data Store

Specialty
Data
(Spreadsheet
Files)

Local
Tables

Specialty Data Store Developer’s Kit 1-3

SDK Release 11.5 Designing a Model for your Specialty Data Store

Designing a Model for your Specialty Data Store

The basic function of a Specialty Data Store is to present to the
Adaptive Server a view of externally stored data in the form of a
relational table. The Specialty Data Store creates the view of a virtual
table on top of externally stored data in the Adaptive Server. The first
step in developing your Specialty Data Store is to create this model.
Once the design of the model is complete, the implementation of
SQL operations such as select will become clearer and easier.

When the Specialty Data Store creates a virtual table view of data, it
can create additional information about the data and map that into
the table view. For example, the virtual view of a text document
might contain a column with actual text data, and columns with
calculated data such as verb count and noun count. Using calculated
columns is a way to incorporate special data search and calculation
functions provided by an external data storage mechanism.

Another example of using calculated columns is a Specialty Data
Store used to implement access to a text storage and search system.
The text storage system has a function called relevance() that searches
a document for words that are relevant to a word. The relevance()
function returns a floating point value as a score.

A virtual table called text_table might be created for the documents
that looks like:

An Adaptive Server user could then enter a query such as:

select data, relevance_rating from text_table
where relevance = “bananas”
and relevance_rating > 3

This query would select text segments where the relevance_rating to
“bananas” was greater than 3.

The relevance column is used to pass an input value to the relevance()
function provided by the text storage system. The relevance column
would not actually return anything if it were included in the select
list of a select statement. It exists as a means of passing a search
parameter in a where clause. The calculated result of the relevance()
function would be returned in the relevance_rating column.

Column Datatype

data text
relevance char(200)
relevance_rating float

1-4 Introduction

Designing a Model for your Specialty Data Store SDK Release 11.5

When designing a model for your Specialty Data Store, consider the
capabilities of the Specialty Data Store interface and what makes
sense for your particular data store. With the simplest set of
capabilities, a Specialty Data Store has to provide the Adaptive
Server with the means of scanning tables with cursors. Only simple
and conditions are required to be processed by the Specialty Data
Store.

If a Specialty Data Store does not provide complex capabilities such
as group by, the Adaptive Server will compensate and perform the
calculation itself after retrieving the qualifying rows for the query.
The best performance is seen when the Adaptive Server is able to off-
load as much of the query as possible to the Specialty Data Store.

Consider the following query:

select sum(a) from t1

If the Specialty Data Store supports the aggregate capability, a cursor is
opened to the Specialty Data Store containing the complete
statement:

select sum(a) from t1

The Specialty Data Store processes the cursor and returns a single
row in the result set. If, however, the aggregate capability is not
supported, the Adaptive Server performs the sum calculation itself.

A cursor is opened with the following text:

select a from t1

Each row of the table is returned to the Adaptive Server and the sum
is calculated. Although this method yields the correct answer, it
significantly increases network overhead.

The designer of the Specialty Data Store should consider the types of
queries a client is likely to perform when deciding on the capability
level of the Specialty Data Store. In some cases it makes sense to treat
specialty data as read-only data. This makes development of a
Specialty Data Store significantly easier since insert, update, and delete
processing does not need to be implemented. If you choose this, the
Specialty Data Store should be defined to the Adaptive Server as a
read-only server. This can be done with the sp_server_option procedure
in the Adaptive Server.

The Specialty Data Store designer should also consider whether data
definition language (DDL) should be supported. Some Specialty
Data Stores will never create new tables and indexes. The Adaptive
Server is simply accessing an existing remote database.

Specialty Data Store Developer’s Kit 1-5

SDK Release 11.5 Sample Specialty Data Store

Sample Specialty Data Store

The sample Specialty Data Store (filesds) included in the SDK
contains the source code for a Specialty Data Store that allows access
to file systems. The model of the filesds Specialty Data Store maps the
specialty data as follows:

• File system directories are presented as tables

• Each row in the table represents a file in the directory

• There are columns for the file name, information on the owner,
size, and a text column for the contents of the file

The contents of the file can be accessed and updated using readtext
and writetext commands. Files can be created and deleted using SQL
insert and delete statements. Content of files can be searched using a
select statement with a like clause. Files can also be imported into the
Adaptive Server using a select into command.

The sample Specialty Data Store implements all of the major
interfaces and procedures that are required, and provides a
framework for the Specialty Data Store that you are developing.

Using the filesds Specialty Data Store

The filesds sample can be used to access files in your file system from
the Adaptive Server after installing it and configuring the Adaptive
Server. It is distributed in source form and must be compiled and
linked with Open Server. The sample is located in the following
directories:

• sdsdk/sample/filesds - the code for the filesds Specialty Data Store

• sdsdk/sample/parser - the code for the Specialty Data Store parser

Installing the filesds Specialty Data Store

To install the filesds sample, follow these steps:

1. Install Open Server and setup a server name and address in the
Sybase interfaces file.

2. Make sure the SYBASE environment variable points to the Open
Server installation directory. It is used by the makefile to find
include files and libraries.

3. Go to the sdsdk/sample/parser directory. The parser uses
generated .c and .h files from the UNIX LEX and YACC

1-6 Introduction

Sample Specialty Data Store SDK Release 11.5

programs. A version of these generated files is already present
that will work for Windows NT users. The generated files that
are supplied were built using AIX.

4. Run the platform-specific shell to rebuild the parser library. For
example, on UNIX platforms use:

build. unix_platform

or, on a Windows NT platform use:

nmake -f make.nt

5. Build the sample Specialty Data Store. Go to the
sdsdk/sample/filesds directory. Makefiles are available for each
platform. Run the makefile for your platform. For example, on
Sun Solaris use:

make -f make.sun

6. Copy the sample configuration file to the $SYBASE directory.
Rename it based on the name of your server. For example, for a
server named “FOO”, rename the file to FOO.cfg. Open the
FOO.cfg file and edit the section in brackets changing [FILESDS]
to [FOO].

7. Edit the textdirectory configuration parameter to point to the
topmost directory where the Specialty Data Store should search
for files. This directory should contain one or more
subdirectories. The subdirectories should contain files you are
interested in accessing through the Adaptive Server. The
following is an example directory structure:

Figure 1-2: Example directory structure

The setting for this directory structure is:

textdirectory = /tmp

tmp

x1files

textfiles

file1.x1
file2.x1
file3.x1

file1.txt
file2.txt

Specialty Data Store Developer’s Kit 1-7

SDK Release 11.5 Sample Specialty Data Store

Using the filesds Specialty Data Store to Access Data

Once filesds is installed, Adaptive Server can be configured to allow
access to files in your file system. The following steps take you
through configuring Adaptive Server to access files in the example
directory structure shown in Figure 1-2 on the server FOO.

1. Start filesds. On UNIX, use the command:

textsds -SFOO &

On Windows NT, use the command:

start textsds -SFOO

2. Add the server FOO to the Adaptive Server using the following
command:

sp_addserver FOO, sds

3. You should now be able to see a list of tables available through
the Specialty Data Store by issuing the command:

FOO...sp_tables

This produces a list of tables. Each of these tables is a
subdirectory underneath the tmp directory configured in
textdirectory.

4. Create proxy tables for the files in your directory structure. For
example, create a proxy table for the x1files subdirectory by
issuing the command:

 sp_addobjectdef xlfiles, “FOO...xlfiles”

This creates a mapping between the Adaptive Server table called
xlfiles and the table managed by the Specialty Data Store also
called xlfiles.

5. Create the xlfiles table using:

 create existing table xlfiles
(

filename varchar(30),
owner varchar(16),
size int,
content image

)

A table now exists in Adaptive Server that maps to your file system
directory called xlfiles. The sample filesds is written to support only
this specific table format. You can now access and manipulate data in
xlfiles. The following are examples of this.

1-8 Introduction

Sample Specialty Data Store SDK Release 11.5

1. select filename, size from xlfiles

This lists all of the files with their sizes in the xlfiles directory.

2. select filename, textptr(content) from xlfiles

This lists filenames and text pointers that can be used with
readtext and writetext to manipulate the file.

3. select filename, content from xlfiles
where size < 1500

This returns files that are less than 1500 bytes. isql does not
support selecting more than 1500 bytes of text and image data.
Data over 1500 bytes should be accessed with readtext and writetext
when using isql.

Sample Program Information

The sample filesds is provided as a sample that implements most of
the Specialty Data Store interface. The primary goal is to provide a
framework for building your Specialty Data Store. The following
sections provide a description of the files included with the sample
program.

Sample Program Code

The code is separated into components that are generic to almost all
Specialty Data Stores, and the code is implementation specific.

You must modify the following two files:

• procs.c - this code implements the catalog stored procedures. In
the filesds Specialty Data Store, the code looks through the
contents of directories to present a file system as if it were a
relational database.

• access.c - this code implements a query. In this implementation,
the parser output is looked at and file I/O routines are called to
search directories, update files, etc. These functions are called
from cursor, dynamic, language, and bulk events.

Sample Data Structures

The file sds.h contains the definition of the following structures used
in the sample:

• CLIENT structure - this structure contains information associated
with each client or Open Server SRVPROC. For this Open Server

Specialty Data Store Developer’s Kit 1-9

SDK Release 11.5 Sample Specialty Data Store

application, a client is always an Adaptive Server connection. It
contains information such as the login and password of the client,
a list of declared cursor and dynamic statements, and general
state information. The structure exists from the time the Adaptive
Server first connects until the time it disconnects.

• CURSOR structure - this structure is allocated each time a cursor
is declared. It contains the cursor’s statement, any parameters for
the open cursor, parsing information, and the result set of the
cursor.

• PARSBLK structure - this structure is used by the parser for
storing its output. It has allocated memory attached to it. A
PARSBLK structure is contained in each CLIENT structure and
each CURSOR structure. The PARSBLK structure in the CLIENT
structure is used for parsing language events.

Sample Modules

The following is a description of the sample source code:

• main.c - this contains the program’s main entry point. This is
mainly Open Server initialization code.

• connect.c - this contains the event handler for the connect event.
You will want to modify this to perform required security checks.
The client’s login and password are available.

• attention.c - this is the Open Server attention event handler. It sets
a status in the CLIENT structure indicating an attention has
occurred. This status should be checked periodically when
returning a large result set.

• bulk.c - this is the Open Server bulk event handler. Bulk events are
also used by writetext operations. When a writetext is issued to an
Open Server, a language event will occur that contains the writetext
command. Immediately after the language event, a bulk event
will occur with the data associated with the writetext command.
The code in the bulk event can then read the data either in whole
or in parts.

• client.c - these are functions used to maintain the CLIENT
structure. It includes enqueue and dequeue functions.

• config.c - this contains code for reading a configuration file.

• cursors.c - this contains the Open Server cursor event. The code in
this file contains the basic functions to respond to cursor events.
Functions outside this module are called to actually process the

1-10 Introduction

Sample Specialty Data Store SDK Release 11.5

queries in the cursors. Most Specialty Data Stores can use the
cursor code in this file as is. The access functions it calls will need
to be tailored to your Specialty Data Store.

• dynamic.c - this contains the Open Server dynamic event handler.
Dynamic events are used by the Adaptive Server for insert, update,
and delete statements. This code is also a basic framework which
calls other functions for the actual query processing.

• lang.c - this contains the Open Server language event handler. All
DDL and transaction commands will come to this event.

• rpc.c - this contains the Open Server remote procedure call event
handler. This function looks at the RPC name and calls an
appropriate handling function.

• procs.c - this contains the functions for handling the RPC’s that a
Specialty Data Store is required to support. Much of this code is
specific to the filesds Specialty Data Store.

• error.c - this is the Open Server error handler. It logs error
messages to the log file. There is also a function to send an error
message to an Adaptive Server client. This probably will not need
to be altered for your application.

• disc.c - this is the Open Server disconnect event handler. This
function is called whenever an Adaptive Server client closes a
connection to the Specialty Data Store. This function must
cleanup all resources acquired during the connection.

• access.c - this contains query processing functions for the
Specialty Data Store. This code is very specific for the filesds
Specialty Data Store, however, you may want to copy the basic
framework.

• fileio.c and fileiont.c - these contain functions for manipulating
files. They are probably only useful for this sample.

• globals.c - this contains various global variables used by the filesds
Specialty Data Store.

• hash.c - this contains functions for mapping files to text pointers.
When a Specialty Data Store manufactures a text pointer value, it
must be capable of using the value to calculate the location of the
original row and column. These functions perform this mapping
as well as save the hashed values in a lookup file.

Specialty Data Store Developer’s Kit 1-11

SDK Release 11.5 Sample Specialty Data Store

Sample Configuration File

The sample configuration file is named FILESDS.cfg. Use this as the
framework for your configuration file by copying the sample
configuration file to the $SYBASE directory. Rename it based on the
name of your server. For example, for a server named “FOO”,
rename the file to FOO.cfg.

Sample Parser

Since the Adaptive Server sends requests to a Specialty Data Store in
SQL format, you must have a parser to process requests. A sample
parser is included in the sdsdk/sample/parser directory. This parser is
based on the UNIX YACC and LEX utilities.

Processing for subqueries, union, and expressions are the only major
capabilities not supported in the sample parser. Table 1-1 lists the
capabilities of this parser as they relate to the sp_capabilities RPC. You
can choose not to implement all of the supported capabilities;
however, if you implement capabilities that are not supported,
changes must be made to the parser.

Table 1-1: Sample parser support of capabilities

ID Capability Name Value

101 sql syntax 1 = Transact-SQL

102 join handling 1 = no outer joins

103 aggregate handling 1 = ANSI 89 support level

104 and predicates 1 = supported

105 or predicates 1 = supported

106 like predicates 1 = ANSI-style supported

107 bulk insert handling 0 = not supported

108 text/image handling 2 = text with textptr

109 transaction handling 1 = local transactions supported

110 text pattern handling 0 =not supported

111 order by 1 = supported

112 group by 1 = ANSI SQL compatible

113 net password encryption 0 = not supported

114 object name case sensitivity 0 = case insensitive

1-12 Introduction

Sample Specialty Data Store SDK Release 11.5

The following describes the function of each of the parser files.

• parser.h - this contains the parser structures and definitions that
are visible to the caller of the parser. This file must be included by
the caller of the function sqlpars().

• parser.l - this contains the parser’s LEX code.

• parser.y - this contains the parser’s YACC code.

• sqlpars.c - this contains the main entry point into the parser,
sqlpars().

• zpars.c - this contains routines that are called by parser.l and
parser.y. The routines in this file populate the user visible parser
structures.

• zpars.h - this contains internal parser definitions and should not
be included by the caller of sqlpars().

The caller of the parser must include the file parser.h and declare a
PARSBLK structure. When sqlpars() is called, the caller passes the
address of the PARSBLK structure and the address of a Transact-
SQL statement. If the parser succeeds, the PARSBLK structure
contains information about the parsed statement. Refer to the
parser.h file for the layout of the PARSBLK structure.

115 distinct 1 = supported

117 union 0 = not supported

118 string functions 0 = not supported

119 expression handling 0 = not supported

120 truncate blanks 0 = do not truncate trailing blanks

121 language handling 1 = all queries supported except
those containing dates

122 date functions 0 = not supported

123 math functions 0 = not supported

124 convert function 0 = not supported

125 T-SQL delete/update 0 = multiple tables not supported

126 insert select 0 = not supported

127 subquery support 0 = not supported

Table 1-1: Sample parser support of capabilities

ID Capability Name Value

Specialty Data Store Developer’s Kit 1-13

SDK Release 11.5 Building a Specialty Data Store

Building a Specialty Data Store

Building a Specialty Data Store requires several steps that should be
implemented in stages so that they can be tested as they are
developed. Your Specialty Data Store is going to consist of an Open
Server application with a number of event handlers (refer to
“Specialty Data Store Components” on page 1-15 for an overview of
the event handlers). Sybase recommends building these handlers in
the following order. For a more detailed description of the RPCs and
commands used in these milestones, refer to Chapter 3, “SQL
Commands,” and Chapter 5, “System and Catalog RPCs.”

Milestone 1: connect to Command

Passthrough connections can be made between the client and the
Specialty Data Store using the connect to command in the Adaptive
Server when this milestone is completed. In passthrough mode,
requests made by an Adaptive Server client are sent directly to the
Specialty Data Store without processing by Adaptive Server. The
Specialty Data Store then processes the passthrough queries.

To reach this milestone:

1. Implement the sp_capabilities RPC. This RPC provides the
Adaptive Server with a list of capabilities the Specialty Data
Store supports.

2. Implement the sp_thread_props RPC. Adaptive Server uses this
RPC to notify the Specialty Data Store of changes in the
condition of a connection. The thread property passthrough_mode
is used to notify the Specialty Data Store that the connection is a
passthrough connection.

3. Implement a minimal language handler. When an Adaptive
Server client enters passthrough mode, all commands are sent to
the Specialty Data Store as language events.

Milestone 2: Table Definition

When passthrough connections are established, you have an
interesting gateway, but the power of the Specialty Data Store is in
providing a view of external data to the Adaptive Server.
Completing this milestone enables a user to create tables in the
Adaptive Server which serve as proxies for remote data. Once proxy

1-14 Introduction

Building a Specialty Data Store SDK Release 11.5

tables are created, they work as an alias for the external table and can
be used as if they were regular local tables.

To reach this milestone:

1. Implement the sp_tables RPC. Adaptive Server uses this to verify
the existence of a remote table. It also verifies that the table name
uniquely identifies a table.

2. Implement the sp_columns RPC. This procedure is used to verify
the proxy table definition in the Adaptive Server is correct. The
result set sent by the Specialty Data Store describes each column
of the table.

3. Implement the sp_statistics RPC. sp_statistics describes the indexes
that exist on the table. If your Specialty Data Store will not
support indexes, this procedure should not return a result set.

4. Execute a create existing table command to define a proxy table to
the Adaptive Server.

Milestone 3: Read-Only Access

Now that proxy tables can be defined, implement the following
interface items so that an Adaptive Server client can perform select
statements on proxy tables managed by the Specialty Data Store:

1. Your minimal language event should only return “done” for all
transaction requests and DDL statements at this time. Additional
support can be added later if desired.

2. Implement the cursor event. Assuming the most basic
capabilities, the Adaptive Server will send select requests as
cursor events. Refer to the Specialty Data Store sample program
as a guide in implementing this.

Milestone 4: Insert, Update, and Delete

After you can successfully read data stored in the Specialty Data
Store, implement the following to enable you to insert, update, and
delete data:

1. Implement the dynamic event handler. This event will be used
whenever insert, update, and delete statements can be passed
entirely to the Specialty Data Store for executing.

2. Positioned updates and deletes through cursors should be a
small extension to your cursor event handling. Cursor updates

Specialty Data Store Developer’s Kit 1-15

SDK Release 11.5 Specialty Data Store Components

and deletes are select cursors, followed by one or more fetches,
followed by a cursor update or delete event.

Milestone 5: Text and Image Handling

The next step is to add support of text and image datatype handling.
See Chapter 4, “Text and Image Handling” for a complete
description of the RPCs and functions that you can choose to
implement.

Milestone 6: Data Definition Language and Transaction Management

If you choose to support data definition language (DDL) and
transaction management, you must provide extensions to your
language event handling to handle DDL and transaction commands.

Specialty Data Store Components

An Open Server application is mainly composed of a set of event
handlers. Each time the Adaptive Server makes a request, an Open
Server event is generated. Refer to the Open Server Server-Library/C
Reference Manual for a detailed description of these events. The Open
Server events that a Specialty Data Store must be prepared to process
are described in the following sections.

SRV_ATTENTION

An attention event is raised when Adaptive Server cancels a request
for data. This is usually due to a cancel request that was received
from the Adaptive Server’s client.

The Specialty Data Store must stop results processing and cancel all
processing associated with the connection when it receives
SRV_ATTENTION.

SRV_BULK

The bulk event is used during text and image handling and during
bulk insert events. When Adaptive Server sends a writetext command
to the Specialty Data Store, the data associated with the command is

1-16 Introduction

Specialty Data Store Components SDK Release 11.5

sent through a bulk event. See Chapter 4, “Text and Image Handling”
for more details on text and image handling.

SRV_CONNECT

The connect event is raised when Adaptive Server connects to the
Specialty Data Store.

The Specialty Data Store should validate the login request and make
a connection to the corresponding, underlying data source, if
appropriate. One connection is made on behalf of each client that
references a remote object. The connection is maintained until the
transaction is complete. The 11.5 version of Adaptive Server will
leave the connection active until the Adaptive Server client
disconnects.

SRV_CURSOR

Adaptive Server uses the cursor event to process select, update, delete,
and possibly readtext. There are several cursor commands that can be
sent to a Specialty Data Store. These commands are described in the
following table:

None of these commands contain embedded data values as part of
the command string. Instead, all data values are passed to the
Specialty Data Store as cursor parameters when the cursor is opened.

Table 1-2: Cursor commands sent to a Specialty Data Store

Command Description

declare Associates a cursor name with the body of the cursor.

open Executes the body of the cursor, and generates a cursor
result set.

information Reports the status of the cursor, or sets the cursor row
fetch count.

fetch Fetches rows from the cursor result set.

update or delete Updates or deletes the contents of the current cursor row.

close Makes the cursor result set unavailable. Re-opening a
cursor regenerates the cursor result set.

deallocate Renders the cursor non-existent. A cursor that has been
deallocated cannot be re-opened.

Specialty Data Store Developer’s Kit 1-17

SDK Release 11.5 Specialty Data Store Components

➤ Note
Adaptive Server attempts to send most SQL requests as language events

if the language capability is set through sp_capabilities. Adaptive Server
may also send insert, update, and delete statements as dynamic statements.

Adaptive Server will do this when it determines that a statement can be

completely passed off to a Specialty Data Store, and the rows do not need

to be viewed by the server.

SRV_DISCONNECT

A disconnect event is generated when the Adaptive Server
disconnects from the Specialty Data Store. Adaptive Server closes all
connections on behalf of a client when that client disconnects from
the server.

It is the responsibility of the Specialty Data Store to terminate
connections to foreign databases, and to free resources such as
memory that have been allocated for connection.

SRV_DYNAMIC

Adaptive Server generates a dynamic event in order to send a
parameterized statement to the Specialty Data Store. Dynamic
events do not generate a result set. There are several dynamic
commands that can be sent. These commands are described in the
following table:

Table 1-3: Dynamic SQL commands sent to a Specialty Data Store

Command Description

prepare Prepare a statement for execution

describe input Request input parameter formats for the current
prepared statement

describe output Request column formats for the current prepared
statement

execute Execute a prepared statement

execute immediate Execute an unprepared statement, which has no
parameters and does not return results

deallocate Deallocate a prepared statement

1-18 Introduction

Debugging a Specialty Data Store SDK Release 11.5

Adaptive Server uses dynamic SQL requests to pass insert, update and
delete commands to a Specialty Data Store. These statements never
contain embedded data values as part of the command string.
Instead data values are sent as parameters when the statement is
executed.

SRV_LANGUAGE

Adaptive Server sends language requests to a Specialty Data Store to
process a number of data definition statements. The syntax of these
commands is described in Chapter 3, “SQL Commands.” Language
events are also used for begin transaction, commit transaction, prepare
transaction, rollback transaction, readtext, and writetext. Depending on how
the language capability is set, additional SQL may be available.

SRV_RPC

The RPC event is raised in response to a remote procedure call (RPC)
request from the Adaptive Server.

Adaptive Server issues RPCs for several reasons:

• To determine the existence and structure of a table and its
indexes. The RPCs sp_tables, sp_columns, and sp_statistics are used
for this purpose.

• To obtain information about the capabilities of the Specialty Data
Store.

• To request text and image information from the Specialty Data
Store

• When the execute command is processed and the RPC name
contains a remote server name.

A description of each RPC that can be generated by Adaptive Server
is described in Chapter 5, “System and Catalog RPCs.”

Debugging a Specialty Data Store

The following are tips for debugging a Specialty Data Store:

• Use Adaptive Server trace flag 11205 to see the events being sent
from Adaptive Server. To set the trace flag, use:

dbcc traceon(11205)

Specialty Data Store Developer’s Kit 1-19

SDK Release 11.5 Debugging a Specialty Data Store

• Add logging statements to the top of each Open Server event
handler.

• You can enable Open Server network logging in the sample
program through the network_tracing configuration parameter.
This information is low level but may be helpful.

1-20 Introduction

Debugging a Specialty Data Store SDK Release 11.5

Specialty Data Store Developer’s Kit 2-1

2 Interface Topics 2.

Overview

This chapter describes the following interaction between Adaptive
Server and the Specialty Data Store:

• Adaptive Server Configuration

• Specialty Data Store Connect Handling

• Specialty Data Store Capabilities

• Specialty Data Store Language Handling

• Specialty Data Store RPC Handling

• Specialty Data Store Cursor Handling

• Specialty Data Store Bulk Copy Handling

• Specialty Data Store Thread Properties

• text and image Handling

• Transaction Management

• Passthrough and Stand-alone Modes

• Datatypes

• Error Handling

Adaptive Server Configuration

Before Adaptive Server can interact with a Specialty Data Store,
Adaptive Server must be configured. First configure the remote
servers definition, then configure the remote table definition. See the
Component Integration Services User’s Guide for more information on
configuring the Adaptive Server.

Remote Server Definition

The Adaptive Server 11.5 supports a server class called sds. This
access method generates the requests described in this manual.
These requests and their expected responses define the nature of the
Adaptive Server Specialty Data Store interface. It is assigned when
the remote server is configured.

2-2 Interface Topics

Adaptive Server Configuration SDK Release 11.5

Remote servers are configured within Adaptive Server by using the
system procedure, sp_addserver. The parameter for server_class must
be included.

The following server classes are supported by Adaptive Server:

• local - indicates that the server name is the local server. This name
appears in the @@servername global variable.

• sql_server - the remote server is a SQL Server. Adaptive Server
determines whether the SQL Server is a System10 or later, or pre-
System10 version, and use the appropriate access method. Note
that the System10 interface uses cursors and dynamic SQL
events, rather than language events, for all DML statements.

• db2 - the remote server is an Open Server application serving as a
gateway to a DB2 (or compatible) RDBMS

• generic - the remote server is an Open Server application that
conforms to the interface specification for a Generic Access
Module.

• direct_connect- the remote server is a Sybase DirectConnect™.

• sds - the remote server is an Open Server application that
conforms to the interface specification for a Specialty Data Store,
as described in this book.

➤ Note
Only the sds interface is documented in this book.

The syntax for the system procedure sp_addserver is:

sp_addserver server_name,server_class [, network_name]

where:

• server_name - the name used to identify the server. It must be
unique.

• server_class - one of the supported server classes defined above. If
this is set to local, then netname is ignored.

• network_name - the server name contained within the interfaces
file. This name may be the same as server_name, or it may differ.

For more information on sp_addserver, see the Adaptive Server Reference
Manual.

Specialty Data Store Developer’s Kit 2-3

SDK Release 11.5 Adaptive Server Configuration

Logging in to Remote Servers

Once the remote server is configured within Adaptive Server, login
information needs to be considered. By default, Adaptive Server
uses the name and password of its clients whenever it needs to
connect to a remote server on behalf of those clients. However, this
default can be overridden by the use of the system procedure
sp_addexternlogin. This procedure allows a System Administrator to
define the name and password to be used by Adaptive Server when
connecting to a remote server on behalf of a particular user. For more
information on sp_addexternlogin, see the Adaptive Server Reference
Manual.

Adaptive Server stores all passwords in encrypted form. If a
Specialty Data Store has been configured with password security
(see “Specialty Data Store Capabilities” on page 2-8), and the server
option net password encryption has been set by the Adaptive Server
System Administrator, then Adaptive Server transmits password
information to that Specialty Data Store in encrypted form.

The Adaptive Server extension to Transact-SQL, connect to server_name,
lets you verify that the Adaptive Server configuration is correct. This
command establishes a passthrough mode connection to the remote
server. This passthrough mode remains in effect until you issue a
disconnect command.

Remote Table Definition

After the remote server is configured, objects in that remote server
cannot be accessed by Adaptive Server as tables until the remote
location and type are mapped to a local Adaptive Server object, and
the table is defined.

There are two methods of defining the storage location of remote
objects. The first method defines a location for all objects in a
database, while the second defines the location of individual objects.
Only one of these methods is required.

Defining the Storage Location of Individual Objects

Use the system procedure sp_addobjectdef to define individual object
storage locations. This procedure allows the user to associate a
remote object name with a local Adaptive Server table name. The
remote object may or may not exist at this time. The syntax for
sp_addobjectdef is as follows:

2-4 Interface Topics

Adaptive Server Configuration SDK Release 11.5

sp_addobjectdef object_name, “object_loc”
[,“object_type”]

where:

• object_name is the local proxy table name to be used by
subsequent DDL or DML statements. object_name takes the form:

dbname.owner.object

where:

- dbname is the local database name (optional).

- owner is the local owner name (optional).

If not present, the object is defined in the current database
owned by the current owner. If either dbname or owner is
specified, the entire object_name must be enclosed in quotes. If
only dbname is present, a placeholder is required for owner.

• object_loc is the storage location of the remote object. When
object_type is table, view, or rpc, object_loc takes the form:

server_name.dbname.owner.object

where:

- server_name is the name of the server that contains this remote
object (required.)

- dbname is the name of the database managed by the remote
server that contains this object (optional).

- owner is the name of the remote server user that owns the
remote object (optional).

- object is the name of the remote table, view, or rpc.

• object_type is the type of remote object. It can be table, view, or rpc.
This parameter is optional; the default is table. When present, the
object_type option must be enclosed in quotes.

For more information on sp_addobjectdef, see the Adaptive Server
Reference Manual.

Defining the Storage Location For All Database Objects

Use the system procedure sp_defaultloc to define the storage location
for all objects in a given database. The remote objects may or may not
already exist. The syntax for sp_defaultloc is:

sp_defaultloc database_name ,“ storage_location ”
[, object type]

Specialty Data Store Developer’s Kit 2-5

SDK Release 11.5 Specialty Data Store Connect Handling

where:

• database_name is the name of the database within Adaptive Server
to which the default location is to be applied.

• storage_location defines the location in a remote server or
directory with which Adaptive Server tables are associated. The
syntax of the storage_location parameter is:

server_name.database_name.owner”

• object_type is the type of remote object. It can be table, view, or rpc.
This parameter is optional; the default is table.

For more information, see the Adaptive Server Reference Manual.

create [existing] table

Once the storage location is defined, the table can be created as a new
or existing object. If the table does not currently exist, use the create
table syntax. If it already exists, use the create existing table syntax. If the
object type is rpc, the object must be defined using create existing table.

When a create table or create existing table statement is received by
Adaptive Server, and the object type is either table or view, the
existence of the remote object is checked by means of the catalog RPC
sp_tables. If the object exists, then its column and index attributes are
obtained using the RPCs sp_columns and sp_statistics, respectively.
Column attributes are compared with those defined for the object in
the create existing table command. Column name, type, length and null
property are checked. Index attributes are added to Adaptive
Server’s sysindexes system table.

Once the object is created, either as a new or existing object, the
remote object can be queried by referencing its local name.

Refer to the reference pages in Chapter 3, “SQL Commands,”
regarding create table and create index, and to the references pages in
Chapter 5, “System and Catalog RPCs,” for the catalog RPCs used by
Adaptive Server.

Specialty Data Store Connect Handling

Each Specialty Data Store responds in some manner to a connect
request issued by Adaptive Server. Each Adaptive Server thread
may have different thread properties, which must be processed by
the Specialty Data Store connect handler.

2-6 Interface Topics

Specialty Data Store Connect Handling SDK Release 11.5

Connection Properties

A number of connection properties are of particular interest to the
Specialty Data Store during connection processing. The following
properties are available to the Specialty Data Store developer by
means of srv_thread_props():

• User name – the name of the user issuing the connect request. The
Specialty Data Store should use this, in conjunction with the user
password, to validate the login with the remote DBMS. The
thread property is SRV_T_USER.

• Password – the user password; may or may not be encrypted (see
“Non-negotiated Logins” on page 2-6). The thread property is
SRV_T_PWD.

• Language – the language used by the Adaptive Server. The
Specialty Data Store sets this language based on what it has
received from the client. The thread property is SRV_T_LOCALE.
It must be combined with cs_locale(..., CS_GET, CS_SYB_LANG...).

• Character set – the character set the Adaptive Server uses. The
value sent will be the default character set of the Specialty Data
Store. The thread property is SRV_T_LOCALE. It must be
combined with cs_locale(..., CS_GET, CS_SYB_CHARSET...).

• Application name – the Adaptive Server sets this name to
omniserver. The thread property is SRV_T_APPLNAME.

• Remote server name - the name of the remote server that the
Adaptive Server is connecting to. When setting up the Sybase
interfaces file, you can associate multiple server names with the
same network port. The client system views each entry as a
separate server, but in fact each name can be routed to the same
server. This flexibility can be used to have different servers with
different behavior, yet still only have one server program
running. The Specialty Data Store can look at the name of the
server the Adaptive Server is connecting to and adjust its
behavior accordingly. This name is available through the thread
property SRV_T_RMTSERVER.

Non-negotiated Logins

By default, Adaptive Server does not perform negotiated logins;
login requests are transmitted via Client-Library
CT_SRV_T_RMTSERVER calls and no security information is
negotiated. However, if the server to which Adaptive Server is

Specialty Data Store Developer’s Kit 2-7

SDK Release 11.5 Specialty Data Store Connect Handling

connecting is configured to require net password encryption, a
negotiated login is attempted.

Negotiated Logins

Adaptive Server may send passwords to the Specialty Data Store in
encrypted form if:

• The Specialty Data Store has indicated that it can support them by
means of the security capability (see “sp_capabilities” on page
5-3).

• The Adaptive Server has been configured with net password
encryption for the server involved.

If both of these conditions are true, the Specialty Data Store must
check to determine the type of negotiated login that is being
requested, and respond accordingly. The following negotiated
logins are possible:

• ENCRYPT – indicates that the client wishes to pass an encrypted
password. This must be supported by the Specialty Data Store if
the security capability indicates that password encryption is
supported.

• CHALLENGE – indicates that the client wishes to negotiate via a
challenge/response exchange. This type of negotiation cannot be
initiated by Adaptive Server.

• SECLABEL – indicates that the client sends security labels. This is
not used by Adaptive Server.

• APPDEFINED – indicates that an application-defined login
handshake is in use. At this time, there is no negotiation defined
between the Adaptive Server and Specialty Data Store.

➤ Note
The standard Sybase client-server encryption algorithm is used to handle

password encryption. The algorithm used is a one-way encryption

algorithm; therefore, if the Specialty Data Store needs to convey password

information to a third party DBMS, then the Specialty Data Store is

responsible for the mapping between the user name and the remote

password.

2-8 Interface Topics

Specialty Data Store Capabilities SDK Release 11.5

Specialty Data Store Capabilities

The first time Adaptive Server establishes a connection to a Specialty
Data Store, it issues an RPC named sp_capabilities and expects a set of
results in return. This result set must describe certain capabilities of
the Specialty Data Store so that Adaptive Server can adjust its
interaction with that Specialty Data Store to take advantage of
available features. For more information on sp_capabilities, refer to
“sp_capabilities” on page 5-3.

The capabilities of interest to Adaptive Server are:

SQL Syntax (101)

This indicates the syntax of SQL that the Adaptive Server will
generate. Sybase recommends that Transact-SQL be used since this is
the only dialect supported by the SDK parser. The possible values
are:

• 1 = Sybase Transact-SQL syntax

• 2 = IBM DB2 syntax

Join Handling (102)

This indicates the Specialty Data Store capability for joining two or
more tables in a single query. The possible values are:

• 0 = cannot handle joins of any kind

• 1 = can handle normal joins, but not outer joins

• 2 = can handle all joins

• 3 = Oracle join behavior

Aggregate Handling (103)

This indicates the Specialty Data Store capability for handling row
aggregates. The aggregate functions are sum(), min(), max(), count() and
avg(). The possible values are:

• 0 = aggregates not supported.

• 1 = ANSI SQL aggregate handling. count(colname) is not supported
(only count(*) is supported). Additionally, aggregates and non-

Specialty Data Store Developer’s Kit 2-9

SDK Release 11.5 Specialty Data Store Capabilities

aggregates cannot appear on the target list together unless the
query contains a group by.

• 2 = Transact-SQL aggregate behavior.

and Predicates (104)

This indicates the Specialty Data Store can process search conditions
connected via and operators. Specialty Data Stores must handle the
and clause. The only value supported is:

• 1 = supported

or Predicates (105)

This indicates the Specialty Data Store can process search conditions
connected via or operators. The possible values are:

• 0 = not supported

• 1 = supported

like Predicates (106)

Describes the level of support for the like predicate. Three possible
values are supported:

• 0 = like is unsupported

• 1 = compatible with ANSI SQL

• 2 = compatible with Sybase Transact-SQL

If the Specialty Data Store can process the like pattern search
condition, the pattern can contain the following special characters,
according to the support level indicated:

Table 2-1: Pattern matching characters supported by like

Character Description
% zero or more of any characters (levels 1 and 2)
_ any one character (levels 1 and 2)
[] range of characters (level 2 only)
^ characters not in range (level 2 only)

2-10 Interface Topics

Specialty Data Store Capabilities SDK Release 11.5

bulk insert Handling (107)

This indicates whether the Specialty Data Store can handle bulk
insert requests. The possible values are:

• 0 = not supported

• 1 = supported

➤ Note
If text or image is supported with text pointers, then the SRV_BULK event

is also raised during writetext requests.

text and image Handling (108)

Indicates the level of support for text and image data (refer to Chapter
4, “Text and Image Handling” for a complete discussion of text and
image handling). The possible values are:

• 0 = not supported

• 1 = text and image is supported, but text pointers are not
supported

• 2 = text and image and text pointers are supported

Transaction Handling (109)

This indicates the Specialty Data Store capability for handling
transactions. Two levels of support are possible:

• 0 = no transaction support

• 1 = minimum transaction support (begin, prepare, commit, and
rollback)

Text Pattern Handling (110)

Indicates whether the patindex function is supported. The possible
values are:

• 0 = not supported

• 1 = supported

Specialty Data Store Developer’s Kit 2-11

SDK Release 11.5 Specialty Data Store Capabilities

order by (111)

This indicates the Specialty Data Store capability for handling the
order by clause. The possible values are:

• 0 = not supported

• 1 = supported

group by (112)

This indicates the Specialty Data Store capability for handling the
group by clause. The possible values are:

• 0 = not supported

• 1 = ANSI SQL compatible

• 2 = Transact-SQL group by (group by “all”, aggregates and non-
aggregates in the target list)

Net Password Encryption (113)

This indicates the Specialty Data Store capability for handling
encrypted passwords. The possible values are:

• 0 = not supported

• 1 = supported

Object Name Case Sensitivity (114)

This indicates whether object names are case sensitive. The possible
values are:

• 0 = object names are case insensitive

• 1 = object names are case sensitive

distinct Handling (115)

This indicates the Specialty Data Store capability for handling the
distinct keyword. The possible values are:

• 0 = distinct not supported

• 1 = distinct supported

2-12 Interface Topics

Specialty Data Store Capabilities SDK Release 11.5

union Support (117)

This indicates whether the Specialty Data Store can handle a union
statement in a select. The possible values are:

• 0 = union not supported

• 1 = union supported

String Functions (118)

This indicates the list of string functions supported by a Specialty
Data Store. The possible values are:

• 0 = no string functions are supported

• 1 = only the substr() function is supported

• 2 = substr(), lower(), ltrim(), rtrim(), and upper() functions are supported

• 3 = all Transact-SQL string functions are supported

Expression Handling (119)

This indicates the expression handling capability of the Specialty
Data Store. Expressions are statements consisting of column names,
constants, operators, and parenthesis. Constants can appear as
parameter markers depending on the language handling capability
(121). Expressions can be nested. The possible values are:

• 0 = minimal expressions are supported. Only column names are
supported in this mode. The select list of a select statement may
also contain the constant value of "1". For example:

select 1 from t1 where a = b

• 1 = ANSI SQL compatible expressions only. These include
column names, constants, +, -, /, *, and the functions defined by
the math function (123) and string function (118) capabilities. For
example:

select a + 3 from t1 where a > (b - (c - 2))

• 2 = Transact-SQL expressions (This includes ANSI SQL
compatible expressions, modulo, bit operators, and other
Transact-SQL extensions).

Specialty Data Store Developer’s Kit 2-13

SDK Release 11.5 Specialty Data Store Capabilities

Truncate Blanks (120)

Normally char parameters can contain trailing blanks that pad the
data to its defined length. This option truncates trailing blanks on
parameters. The possible values are:

• 0 = do not truncate trailing blanks

• 1 = truncate trailing blanks

Language Handling (121)

This indicates the level of SQL parsing supported by the Specialty
Data Store. If this capability is set, the Adaptive Server assumes that
it does not need to use cursors and dynamic statements for all
requests. It is more efficient to send SQL requests as language events
instead of cursor or dynamic events. Unlike cursor and dynamic
events, datatype values are not parameterized. Instead, they are
expanded to the normal Transact-SQL syntax of a datatype. The
possible values are:

• 0 = do not use language events for other than transaction control,
readtext, writetext, and DDL statements.

• 1 = able to parse SQL as long as date datatypes are not present.
Language events will be used when the query does not involve
date datatypes.

• 2 = able to parse all SQL with any datatype. Use language events
whenever possible.

Date Functions (122)

This indicates the list of date functions supported by a Specialty Data
Store. The possible values are:

• 0 = no date functions are supported

• 1= all Transact-SQL date functions are supported

Math Functions (123)

This indicates the list of math functions supported by a Specialty
Data Store. The possible values are:

• 0 = no math functions are supported

2-14 Interface Topics

Specialty Data Store Capabilities SDK Release 11.5

• 1= abs, cos, exp, floor, power, round, sign, sin, sqrt, and tan functions are
supported

• 2= all Transact-SQL math functions are supported

convert Function (124)

This indicates support for the convert() function. The possible values
are:

• 0 = convert() function is not supported

• 1= convert() function is supported

Transact-SQL delete/update (125)

This indicates support for the Transact-SQL capability of having
multiple tables in an update or delete from clause. The possible values
are:

• 0 = Multiple tables are not supported

• 1=Multiple tables are allowed in from clause

insert select (126)

This indicates the capability to handle a select clause within an insert
statement. The possible values are:

• 0 = insert select is not supported.

• 1 = ANSI SQL is supported. No group by or order by is supported.

• 2 = Transact-SQL is supported.

Subquery Support (127)

This indicates whether the Specialty Data Store can handle a
subquery in a SQL statement. The possible values are:

• 0 = subqueries are not supported

• 1 = ANSI SQL is supported

• 2 = Transact-SQL is supported, except group by and order by in a
subquery is not supported

Specialty Data Store Developer’s Kit 2-15

SDK Release 11.5 Specialty Data Store Language Handling

Specialty Data Store Language Handling

Specialty Data Stores are required to handle a core set of SQL
requests as language events. In some cases, these requests do not
make sense for a particular data store. In this case, the Specialty Data
Store can reply with an error message.

The following SQL commands are sent to a Specialty Data Store as
language events:

• alter table

• begin transaction

• commit transaction

• create index

• create table

• drop index

• drop table

• insert bulk

• prepare transaction

• rollback transaction

• truncate table

• writetext bulk

The syntax for each command is described in Chapter 3, “SQL
Commands”.

Specialty Data Store RPC Handling

A Specialty Data Store must be capable of handling RPC requests
from the Adaptive Server. In addition, the Specialty Data Store may
provide support for user-generated requests issued through the
Adaptive Server in response to the execute command.

There are four categories of RPCs that the Adaptive Server issues:

• Catalog RPCs

• text and image handling RPCs

• Administrative RPCs

• User-generated RPCs that are specific to your Specialty Data
Store implementation

2-16 Interface Topics

Specialty Data Store RPC Handling SDK Release 11.5

Catalog RPCs

Catalog RPCs are defined to enable a DBMS-independent manner of
accessing system catalogs. The RPCs enable a common interface to
the dictionary of the underlying DBMS supported by the Specialty
Data Store, without forcing the client program (Adaptive Server) to
know anything about the means of doing so.

The required catalog RPCs are:

• sp_columns

• sp_statistics

• sp_tables

These RPCs are described in Chapter 5, “System and Catalog RPCs”.

text and image Handling RPCs

If a Specialty Data Store indicates that it supports text and image
datatypes, then it must also support the following RPCs to enable
Adaptive Server to extract information regarding the text or image
column:

• sp_textvalid

• sp_patindex

• sp_datalength

• sp_char_length

These RPCs are described in Chapter 4, “Text and Image Handling”
and Chapter 5, “System and Catalog RPCs”.

Administrative RPCs

The administrative RPCs are:

• sp_capabilities

• sp_thread_props

These RPCs are described in Chapter 5, “System and Catalog RPCs”.

Specialty Data Store Developer’s Kit 2-17

SDK Release 11.5 Specialty Data Store Cursor Handling

User-generated RPCs

An Adaptive Server user can request the execution of a remote
procedure by means of the execute command. If the RPC name is of
the form:

SERVER...rpc_name

then Adaptive Server issues an RPC to the named server, passing any
arguments that are provided. The datatype of the arguments can be
any supported Adaptive Server datatype, including text and image.

Specialty Data Store Cursor Handling

The following SQL commands are issued from the Adaptive Server
to a Specialty Data Store by means of cursors:

• select

• update

• delete

• readtext

In each case, the cursor commands used are declare, open, fetch (select
only) and close. deallocate is also used to terminate the cursor.

Data is sent by parameters. For example, the where clause of a select
statement contains host variable identifiers in the command text, and
Adaptive Server sends parameters for each host variable. The
parameters are sent in the native Open Server datatype, so that the
Specialty Data Store does not have to interpret the type from a
character string.

An example of this is:

select c3 from table_1 where c1 = @p1 and c2 = @p2

In this example, @p1 and @p2 are parameters, and the Specialty Data
Store should expect to receive two cursor parameters at the time the
cursor is opened.

Similarly, the values of the set clause of an update statement are passed
as parameters:

update t1 set c1 = @p1, c2 = @p2 where [current of
cursor name]

Each cursor can be re-used, with different parameter values, after it
is closed and before it is deallocated. Thus, a pre-compiled cursor

2-18 Interface Topics

Specialty Data Store Dynamic Event Handling SDK Release 11.5

that has been declared can be opened as many times as necessary
without forcing cursor re-compilation.

➤ Note
The parameters are indicated in Transact-SQL syntax by the “@”

character, while in DB2 syntax, each parameter is indicated by a “?” with no

following characters.

Specialty Data Store Dynamic Event Handling

insert, update and delete commands are sent from Adaptive Server to a
Specialty Data Store by means of SRV_DYNAMIC events. In each
case, the dynamic statement is first prepared, and input parameters
are described. The statement is then executed at least once with
actual data values for each parameter marker. A request to execute a
prepared statement can be issued many times, each time with
separate data values.

When Adaptive Server is finished with the command, it deallocates
the statement.

In each case, Adaptive Server issues appropriate calls to Client-
Library to make the requests, and the Specialty Data Store must
provide appropriate responses in its SRV_DYNAMIC event handler.

The syntax of the dynamic commands sent to a Specialty Data Store
during the prepare phase is described in Chapter 3, “SQL
Commands”.

Specialty Data Store Bulk Copy Handling

There are two categories of bulk requests transmitted from Adaptive
Server to a Specialty Data Store using the SRV_BULK event:

• bulk insert into table

• text and image write operations

bulk insert Into Table

If the Specialty Data Store has indicated that it can support bulk
inserts, Adaptive Server generates bulk insert commands in the
following cases:

Specialty Data Store Developer’s Kit 2-19

SDK Release 11.5 Specialty Data Store Bulk Copy Handling

• The target table of Adaptive Server’s select into is owned by a
Specialty Data Store

• Adaptive Server receives a bulk copy in request to a table that is
mapped to a Specialty Data Store

Adaptive Server uses standard Client-Library bulk copy functions to
initiate the bulk transfer to the Specialty Data Store. This requires
that the Specialty Data Store respond to the bulk request as described
in the following sections.

Bulk Copy Initialization

The bulk copy request is initialized by Adaptive Server by a call to the
blk_init() function. This function sends a language request to the
Specialty Data Store in the form:

insert bulk table_nam e

The Specialty Data Store must respond to this in its
SRV_LANGUAGE event handler as follows:

• Record the bulk type internally by calling srv_thread_props() with
cmd set to CS_SET, property set to SRV_T_BULKTYPE, and bufp
pointing to a value of SRV_BULKLOAD.

• Allocate a bulk descriptor structure, CS_BLKDESC, by calling
blk_alloc().

• Initialize the CS_BLKDESC structure. This would normally be
done by a call to blk_init(), in which a connection to an Adaptive
Server is expected. In the case of a Specialty Data Store, the
initialization must be performed by the Specialty Data Store
application logic.

• Initialize the Specialty Data Store half of the exchange with a call
to blk_srvinit().

Bulk Transfer

Once the proper response to a bulk initialization request has been
made, the Specialty Data Store receives bulk copy rows from
Adaptive Server in the form of SRV_BULK events, and must respond
to these events as follows:

• Allocate a row buffer using blk_rowalloc()

• Call blk_getrow() until there are no more rows

2-20 Interface Topics

Specialty Data Store Thread Properties SDK Release 11.5

• For each row, blk_colval() provides the data value of a given column
in the row

• For each row, an appropriate insert command must be issued to
transfer the row to the target DBMS

• The function blk_rowdrop() must be called to free the row buffer
when processing is complete.

• The function blk_drop() should be called to deallocate the
CS_BLKDESC structure

➤ Note
Refer to Open Client and Open Server Common Libraries Reference
Manual for a complete description of the functions required to implement

this behavior.

Bulk Copy Events for text and image Data

If the Specialty Data Store indicates that it fully supports text and
image data, Adaptive Server generates bulk events to send text and
image data. Adaptive Server uses the standard Client-Library
function ct_send_data() to send text and image data to a Specialty Data
Store. This function causes both language and bulk events.

For more information, see Chapter 4, “Text and Image Handling,”
and the Open Client and Open Server Common Libraries Reference
Manual.

Specialty Data Store Thread Properties

All requests to modify thread-specific options are transmitted from
Adaptive Server to the Specialty Data Store by means of the
sp_thread_props RPC. In particular, the following options can be set by
Adaptive Server using this RPC, when one of its clients has specified
a change:

• rowcount – this limits the number of rows returned from a
Specialty Data Store to Adaptive Server

• textsize – this limits the size of text or image data returned from the
Specialty Data Store in a single fetch

Specialty Data Store Developer’s Kit 2-21

SDK Release 11.5 update and delete Handling

• passthrough mode – informs the Specialty Data Store that its client
wishes to enter or exit passthrough mode (no SQL transformation
is to be performed)

update and delete Handling

The query optimizer of Adaptive Server examines each update and
delete statement it receives, and determines whether the entire
statement can be reconstructed for sending to a remote server, or
whether it must first examine the data involved before the update or
delete can occur.

If the entire statement can be reconstructed for transmission to a
remote server, a dynamic update or delete occurs. The remote server
receives a complete statement in which the set and where clauses are
parameterized.

If the Adaptive Server must first examine the rows involved in an
update or delete, a cursor is opened which issues a select ... for update. The
Adaptive Server will then generate a cursor update or delete event for
the row made current by the cursor.

In both cases, host variables, or parameter markers, are used to
define the right side of expressions in the set and where clauses. For
example, in the case of dynamic update or delete, the following syntax
is used:

update t1 set c1 = ? where c2 = ?

delete t1 where c1 = ?

In the case of cursor updates, the following syntax is passed to the
Specialty Data Store:

update t1 set c1 = @p1

The clause where current of cursor... is assumed, and not transmitted by
Adaptive Server.

Parameters

When a table is created in the Adaptive Server through the create
existing table command, the server sends an sp_columns request for a
description of the data to the Specialty Data Store. As part of this
result set, the Specialty Data Store sends back a remote datatype
column. The value in the column is stored in the Adaptive Server’s
system catalogs. Whenever the Adaptive Server sends a parameter
that represents a value for that column, it puts the remote datatype

2-22 Interface Topics

Transaction Management SDK Release 11.5

value into the user-defined datatype field of the parameter. If no
remote datatype was returned, or the table was created through a create
table command, the remote datatype value will be zero.

This feature allows the Specialty Data Store to deal with cases in
which there is an ambiguous mapping of remote datatypes to Sybase
datatypes. The Specialty Data Store can look at the user-defined
datatype field to get the datatype that the column was originally
derived from.

Here is an example of how this might be used with a Specialty Data
Store for accessing DB2. DB2 has a date, time, and timestamp datatype,
while Sybase uses the datetime datatype for expressing both date and
time. When the Specialty Data Store describes the column with
sp_columns, it returns a remote datatype value that indicates whether
the column was originally date, time, or timestamp. When a parameter
is received from the Adaptive Server that references this column, the
user defined datatype field tells the Specialty Data Store the original
datatype. The Specialty Data Store can then read the parameter and
format a DB2 SQL statement with the correct format for the DB2
datatype.

The values for remote datatype are defined entirely by the Specialty
Data Store. The Adaptive Server simply stores the value and resends
it in the user-defined datatype field of a parameter.

Transaction Management

Adaptive Server manages transactions for its clients, if the
transactions involve work done in Specialty Data Stores that support
transactions. In order to do so effectively, the following commands,
sent as language events, must be supported by the Specialty Data
Store if the Specialty Data Store indicates that it supports transaction
management:

• begin transaction

• commit transaction

• prepare transaction

• rollback transaction

While release 11.5 of Adaptive Server does not support a full two-
phase commit capability, it attempts to narrow the window of
opportunity for failure when trying to commit a distributed unit of
work.

Specialty Data Store Developer’s Kit 2-23

SDK Release 11.5 Passthrough Mode

When Adaptive Server attempts to commit work performed by all
servers involved in a particular transaction, it first broadcasts a
prepare transaction command to all servers involved in the transaction.
The purpose of this is to verify that all servers are still active. If all
servers respond positively, then the commit transaction command is
broadcast to each server serially.

If the prepare command results in a failure return status, then all
servers involved in the transactions are issued a rollback command.

Passthrough Mode

Passthrough mode is requested by the Adaptive Server in response
to a client request to establish passthrough operation to a Specialty
Data Store.

If an Adaptive Server client wishes to enter into a passthrough dialog
with the Specialty Data Store, Adaptive Server sends the following
RPC command to the Specialty Data Store:

sp_thread_props “passthru mode”, 1

When the Adaptive Server client wishes to leave passthrough mode,
Adaptive Server issues the RPC:

sp_thread_props “passthru mode”, 0

While in passthrough mode, the Specialty Data Store can provide
responses to incoming language commands in whatever manner is
appropriate for the DBMS supported by the Specialty Data Store.

This procedure is called so the Specialty Data Store can change its
behavior because of the knowledge the SQL is being generated by an
end user instead of by the Adaptive Server. For instance, a security
check may need to be performed.

Datatypes

Datatype compatibility must be considered when:

• Adaptive Server passes datatypes to the Specialty Data Store
during a create table or alter table statement

• Adaptive Server queries the Specialty Data Store to determine the
datatypes of existing columns in a remote table during a create
existing table statement

• Parameters are used to pass a data value from a Specialty Data
Store to Adaptive Server, as part of a DML statement

2-24 Interface Topics

Datatypes SDK Release 11.5

create table or alter table

Each time a user defines a column with the create table or alter table
statement, a datatype for the column must be provided. Adaptive
Server reconstructs the create table and alter table statements using the
syntax described in Chapter 3, “SQL Commands,” and passes
commands to the Specialty Data Store. The Specialty Data Store must
be able to transform the commands into a form that the underlying
DBMS recognizes.

Adaptive Server uses the datatype of the Adaptive Server column
when it reconstructs these commands; thus the commands will
contain all Adaptive Server datatypes.

create existing table

When a create existing table command is processed, Adaptive Server
ensures that the columns of the existing remote table are compatible
with the columns being defined for the table within Adaptive Server.
The following checks are made for each column:

• The datatypes of the remote table’s columns must be compatible
with those of the table being defined within Adaptive Server

• The column length defined for columns of types char, varchar,
binary, and varbinary must match those of corresponding columns
of the remote table

• Scale and precision of columns of type numeric or decimal must
match those of the corresponding column in the remote table

• If the remote table column allows NULL values, then the
Adaptive Server definition must allow NULL values

• If the remote table column does not allow NULL values, then the
Adaptive Server definition must not allow NULL values

• The count of columns in the remote table must match the
Adaptive Server’s definition

The datatypes of the columns in the existing table are queried via the
catalog RPC sp_columns.

DML Statements

Adaptive Server passes data values as parameters to either a cursor
or dynamic SQL statement. The parameters are in the datatype
native to the Adaptive Server, and must be converted by the

Specialty Data Store Developer’s Kit 2-25

SDK Release 11.5 Error Handling and Messaging

Specialty Data Store into formats appropriate for the underlying
DBMS.

Adaptive Server only transmits data values as part of the text of a
SQL command when the language capability indicates it can be
handled. Datatype information is passed in the CS_DATAFMT
structure associated with the parameter. The following fields of the
structure contains datatype information:

• datatype – the CS_LIB type representing the data. For example,
CS_INT_TYPE.

• usertype – the native DBMS datatype. This type is passed to
Adaptive Server during a create existing table command as part of
the result set from sp_columns (see “sp_columns” on page 5-7).
Adaptive Server returns this type in the usertype field to assist the
Specialty Data Store in type conversions.

Result Rows

When a Specialty Data Store returns result rows as part of processing
a select command, it has more flexibility in the datatypes it uses. The
Adaptive Server must be able to convert the datatype of the result
column into the datatype described by sp_columns. These conversion
rules are determined by the capabilities of the cs_convert function
documented in the Open Server manual set.

For example, a Specialty Data Store might describe a column by
sp_columns as being a float datatype. When a select is processed by the
Specialty Data Store, it can choose to return that column as a char
datatype as long as the string could be converted to a float, i.e.,
“123.456”.

For the best performance, it is recommended that result rows be
returned in the format that they are described by in sp_columns. This
eliminates a conversion step.

Error Handling and Messaging

Adaptive Server does not attempt to interpret or transform an error
message when it receives one from a remote server. All error or
informational messages received from a remote sever are passed on
to the Adaptive Server client that caused the message to be
generated.

2-26 Interface Topics

Error Handling and Messaging SDK Release 11.5

Whether or not Adaptive Server treats the results of a command as
an error depends on the done status it receives from the remote
server, and not the error message itself. If the done packet contains
an error status, Adaptive Server treats the results as though an error
occurred, and issues a backout or rollback as appropriate for the
command.

Specialty Data Store Developer’s Kit 3-1

3 SQL Commands 3.

Adaptive Server sends SQL commands to a Specialty Data Store
when a client requests data access to a table that has been mapped to
a remote location. The Adaptive Server issues an sp_capabilities RPC to
the Specialty Data Store the first time a connection is made. The
syntax of the SQL statements the Adaptive Server generates and
transmits to the Specialty Data Store is determined by its response to
the sp_capabilities sql_syntax parameter.

In this chapter, SQL commands, clauses, and other syntactical
elements are presented in alphabetical order. These commands are a
subset of Transact-SQL and DB2 SQL that the Adaptive Server uses
when interacting with a Specialty Data Store.

➤ Note
This chapter defines the minimum level of SQL that will be sent. The results

of sp_capabilities can cause more complex SQL such as expressions and

subqueries to be generated.

The following table lists commands discussed in this chapter:

Table 3-1: SQL commands

Command Description

alter table Add new columns to an existing table.

begin transaction Begin a new transaction.

commit transaction Commit work performed for this transaction.

create index Create a new index on a table.

create table Create new tables.

delete (cursor) Remove rows from a table.

delete (dynamic) Remove rows from a table.

drop index Remove an index from a table.

drop table Remove a table.

insert Add new rows to a table or view.

insert bulk Begin or resume bulk insert operation.

prepare transaction Prepare to commit a transaction.

3-2 SQL Commands

SDK Release 11.5

readtext Transmit text and image data to client.

rollback transaction Roll back or abort the current transaction.

select Retrieve rows from database objects.

truncate table Truncate the table by removing all rows. This statement
is not logged, and is not part of any transaction.

update (cursor) Positional update: change data in a row made current by
a cursor.

update (dynamic) Dynamic update: change data in an existing row(s).

writetext Write text data to Open Server.

writetext bulk Begin transmission of text and image data to Open
Server.

Table 3-1: SQL commands (continued)

Command Description

Specialty Data Store Developer’s Kit 3-3

SDK Release 11.5 alter table

alter table

Function

Adds new columns to an existing table.

Transact-SQL Syntax

alter table [database .[owner].] table_name
add column_name datatype [null]

{[, next_column]}...

DB2 SQL Syntax

ALTER TABLE [owner .] table_name
ADD column_name datatype

{[, next_column]}...

Keywords and Options

table_name – is the name of the table you want to change.

column_name – is the name of a column you want to add to the table.

datatype – is any of the system datatypes except bit. If the syntax is
DB2, then datatypes are expressed as DB2 datatypes.

null – specifies that a null value should be assigned as the default if
the user does not supply a value.

next_column – indicates that you can include additional column
definitions (separated by commas) using the same syntax
described for a column definition.

Examples

1. alter table publishers
add manager_name varchar(40) null

Add the manager_name column to the publishers table. For each
existing row in the table, assign a null value to the new column.

Comments

• The alter table command is sent from Adaptive Server to a Specialty
Data Store as a language event.

3-4 SQL Commands

alter table SDK Release 11.5

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-5

SDK Release 11.5 begin transaction

begin transaction

Function

Marks the starting point of a transaction.

Transact-SQL Syntax

begin transaction [transaction_name]

DB2 SQL Syntax

(No equivalent; BEGIN TRANSACTION is used)

Keywords and Options

transaction_name – is the name assigned to the transaction. It must
conform to the rules for identifiers.

Examples

1. begin transaction

Comments

• The begin transaction command is sent from Adaptive Server to a
Specialty Data Store as a language event.

• In Adaptive Server 11.5, transaction_name is not used; it is reserved
for use in a later release.

• There is no DB2 equivalent of this command. If the Specialty Data
Store requires DB2 syntax, the command is sent as BEGIN
TRANSACTION.

3-6 SQL Commands

commit transaction SDK Release 11.5

commit transaction

Function

Commits the work performed by the current transaction.

Transact-SQL Syntax

commit transaction [transaction_name]

DB2 SQL Syntax

COMMIT WORK

Keywords and Options

transaction_name – is the name assigned to the transaction. It must
conform to the rules for identifiers.

Examples

1. commit transaction

Comments

• The commit transaction command is sent from Adaptive Server to a
Specialty Data Store as a language event.

• If a transaction is not currently active, commit transaction and rollback
transaction statements have no effect.

• In Adaptive Server 11.5, transaction_name is not used; it is reserved
for use in a later release.

Specialty Data Store Developer’s Kit 3-7

SDK Release 11.5 create index

create index

Function

Creates indexes on column(s) in a table.

Transact-SQL Syntax

create [unique] [clustered | nonclustered]
index index_name

on [[database .] owner .] table_name
(column_name [, column_name]...)

[with {fillfactor = x, ignore_dup_key,
sorted_data}]

[on segment_name]

DB2 SQL Syntax

CREATE [UNIQUE] INDEX index_name
ON [owner .] table_name
(column_name [, column_name]...)

Keywords and Options

unique – prohibits duplicate index values.

clustered – indicates the physical order of rows on this table is the
same as the indexed order of the rows. Only one clustered index
is permitted per table.

nonclustered – indicates that there is a level of indirection between the
index structure and the data itself. You can have up to 249
nonclustered indexes per table.

index_name – is the name of the index. Index names must be unique
within a table, but need not be unique within a database.

table_name – is the name of the table in which the indexed column or
columns are located.

column_name – is the column or columns to be included in the index.
Composite indexes are based on the combined values of up to 16
columns. The sum of the maximum lengths of all the columns
used in a composite index cannot exceed 256 bytes.

fillfactor – specifies how full the DBMS makes each page when it is
creating a new index on existing data. The fillfactor percentage is
relevant only at the time the index is created. As the data changes,

3-8 SQL Commands

create index SDK Release 11.5

the pages are not maintained at any particular level of fullness.
The default is 0. If the fillfactor is set to 100, the DBMS creates
indexes whose pages are 100% full.

ignore_dup_key – responds to a duplicate key entry into a table that has
a unique index. An attempted insert of a duplicate key is ignored,
and the insert is cancelled with an informational message.

sorted_data – speeds creation of an index when the data in the table is
in sorted order. If sorted_data is specified but data is not in sorted
order, an error message displays and the command is aborted.

on segment_name – specifies that the index is to be created on the
named segment.

Examples

1. create index au_id_ind
on authors (au_id)

2. create unique clustered index au_id_ind
on authors (au_id)

3. create index ind1
on titleauthor (au_id, title_id)

4. create nonclustered index zip_ind
on authors (zip) with fillfactor = 25

Comments

• The create index command is sent from Adaptive Server to a
Specialty Data Store as a language event.

• Columns of bit, text, and image datatypes cannot be indexed.

• A table can have a maximum of 249 nonclustered indexes,
whether or not it also has a clustered index.

• You cannot create an index on a view.

• If your Specialty Data Store supports multiple clustered indexes,
Adaptive Server will treat the first as a clustered index.
Subsequent clustered indexes will be treated as non-clustered
indexes.

Specialty Data Store Developer’s Kit 3-9

SDK Release 11.5 create table

create table

Function

Creates new tables.

Transact-SQL Syntax

 create table [database .[owner].] table_name
(column_name datatype {null | not null}
[{, next_column }...])
[on segment_name]

DB2 SQL Syntax

CREATE TABLE [owner .] table_name
(column_name datatype [NOT NULL]
[{, next_column }...])
[IN { DATABASE database_name |

database_name . tablespace_name }]

Keywords and Options

table_name – is the name of the new table. It conforms to the rules for
identifiers and is unique within the database and to the owner.

column_name – is the name of the column in the table. It conforms to
the rules for identifiers, and is unique in the table.

datatype – is the datatype of the column. Only system datatypes are
used. Certain datatypes expect a length, n, in parentheses:

datatype(n)

null | not null – specifies a null value if a user does not provide a value
during an insertion and no default exists (for null), or that a user
must provide a non-null value if no default exists (for not null).
Adaptive Server always specifies null or not null.

next_column – indicates that you can include additional column
definitions (separated by commas) using the same syntax
described for a column definition.

on segment_name – specifies the name of the segment on which to
place the table.

IN – specifies a DB2 database name or a database and tablespace
name combination.

3-10 SQL Commands

create table SDK Release 11.5

Examples

1. create table titles
(title_idtid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200)null,
pubdate datetime not null,
contract bitnot null)

Creates the titles table.

Comments

• The create table command is sent from Adaptive Server to a
Specialty Data Store as a language event.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

• If segment_name is not provided in the command, Adaptive
Server looks for a semicolon (;) in the storage location name in the
table definition created by sp_addobjectdef (see “Defining the
Storage Location of Individual Objects” on page 2-3). Everything
that follows the semicolon is passed to the Specialty Data Store as
segment_name.

Specialty Data Store Developer’s Kit 3-11

SDK Release 11.5 delete (cursor)

delete (cursor)

Function

Removes a row from a table. The row affected must have been made
current by a cursor.

Transact-SQL Syntax

delete [[database .] owner .]{ table_name | view_name }

DB2 SQL Syntax

DELETE FROM [owner .]{ table_name | view_name }

Keywords and Options

table_name or view_name – is the name of the table or view the rows
will be deleted from.

Comments

• Adaptive Server issues a cursor delete request if it must examine
any column’s data in order to fulfill the client request. This is true
if:

- There is more than one table involved in the delete statement

- The delete statement contains a where clause with built-in
functions

• The cursor delete command is passed from Adaptive Server to a
Specialty Data Store as a series of cursor commands:

- declare

- open

- fetch

- delete

- close

- deallocate

• No where clause is constructed; Adaptive Server assumes that the
Specialty Data Store appends the equivalent of:

where current of cursor cursor_name

• The cursor can be used multiple times before it is deallocated.

3-12 SQL Commands

delete (cursor) SDK Release 11.5

• When the Specialty Data Store calls srv_senddone to mark the
completion of the delete command, it must indicate the number of
rows affected by the delete command. Normally this row count is
1.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-13

SDK Release 11.5 delete (dynamic)

delete (dynamic)

Function

Removes row(s) from a table.

Transact-SQL Syntax

delete [[database .] owner .]{ table_name | view_name }
[where column_name relop expression

[and column_name relop expression ...]]

DB2 SQL Syntax

DELETE FROM [owner .]{ table_name | view_name }
[WHERE column_name relop expression

[AND column_name relop expression ...]]

Keywords and Options

table_name or view_name – is the name of the table or view the rows
will be deleted from.

column_name – is the name of the column used in the comparison.

relop – is the keyword like, is null, or is not null, or the comparison
operator =, <>, >, <,<=, or >=.

expression – depending on how the expression handling capability is
set, expression can consist of column names, constants, operators,
parenthesis, and subqueries.

Comments

• Adaptive Server issues a dynamic delete request if it does not have
to examine any of the column’s data in order to fulfill the client
request. This is true if:

- There is only one table involved in the delete statement

- The delete statement contains no built-in functions in its where
clause

• The dynamic delete command is passed from Adaptive Server to a
Specialty Data Store as a series of dynamic requests:

- prepare (define parameter formats)

- execute (with parameter data)

3-14 SQL Commands

delete (dynamic) SDK Release 11.5

- deallocate

• The where clause is optional; it is provided by Adaptive Server if
the original delete command contained a where clause.

• The prepared statement can be executed multiple times before it
is deallocated.

• When the Specialty Data Store calls srv_senddone to mark the
completion of the delete command, the number of rows affected
must be indicated.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-15

SDK Release 11.5 drop index

drop index

Function

Removes an index from a table in the current database

Transact-SQL Syntax

drop index table_name.index_name

DB2 SQL Syntax

DROP INDEX index_name

Keywords and Options

table_name – is the table in which the indexed column is located. The
table must be in the current database.

index_name – is the name of the index to be dropped.

Examples

1. drop index authors.au_id_ind

Comments

• The drop index command is sent from Adaptive Server to a
Specialty Data Store as a language event.

• To view indexes that exist on a table, use:

sp_helpindex table_name

3-16 SQL Commands

drop table SDK Release 11.5

drop table

Function

Removes a table definition and all of its data, indexes, triggers, and
permission specifications from the database.

Transact-SQL Syntax

drop table [[database .] owner .] table_name

DB2 SQL Syntax

DROP TABLE [owner .] table_name

Keywords and Options

table_name – is the name of the table to be dropped.

Examples

1. drop table authors

Comments

• The drop table command is passed from Adaptive Server to a
Specialty Data Store as a language event.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-17

SDK Release 11.5 insert (dynamic)

insert (dynamic)

Function

Adds a new row to a table or view.

Transact-SQL Syntax

insert [database .[owner.]]{ table_name | view_name}
[(column_list)]
values (? [, ?]...)

DB2 SQL Syntax

INSERT INTO [owner .]{ table_name | view_name }
[(column_list)]
VALUES (? [, ?]...)

Keywords and Options

table_name, view_name – is the table or view in which the new rows
will be inserted.

column_list – is a list of one or more columns to which data is to be
added. The columns can be in any order, but the incoming data
(whether in a values clause or a select clause) are in the same order.

values – is a keyword that introduces a list of expressions.

? – specifies parameters that Adaptive Server will pass at the time the
insert command should be executed.

Examples

2. insert titles
(title_id, title, type, pub_id, notes, pubdate,

contract)
values (?, ?, ?, ?, ?, ?, ?)

Comments

• The insert command is passed from Adaptive Server to a Specialty
Data Store as a series of dynamic SQL commands:

- prepare

- execute

- close

- deallocate

3-18 SQL Commands

insert (dynamic) SDK Release 11.5

• The values list is passed as dynamic SQL parameters.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-19

SDK Release 11.5 insert bulk

insert bulk

Function

Begins or resumes bulk insert operation.

Transact-SQL Syntax

insert bulk [owner .]{ table_name | view_name }
[with nodescribe]

DB2 SQL Syntax

INSERT BULK [owner .]{ table_name | view_name }
[WITH NODESCRIBE]

Keywords and Options

bulk – indicates that bulk copy rows are sent to the Specialty Data
Store by means of the SRV_BULK event. The Specialty Data Store
must initialize a CS_BLKDESC data structure and return it to
Adaptive Server via the blk_srvinit() function.

table_name, view_name – is the table or view the bulk copy rows will
be sent to.

with nodescribe – indicates that the previous batch of bulk insert
operations should be committed to the database.

Comments

• The insert bulk command is passed from Adaptive Server to a
Specialty Data Store as a language event.

• If the command includes the with nodescribe option, the
CS_BLKDESC has been allocated and described and need not be
described to the client again. This command is sent to the
Specialty Data Store as a result of a blk_done (BLK_COMMIT)
request from the client (Adaptive Server), indicating that the
previous batch of rows should be committed to the database.

• INSERT BULK is not proper DB2 syntax; however, if the Specialty
Data Store indicates that it supports bulk insert capabilities, then
it must support this syntax regardless of the value of the sql syntax
capability.

3-20 SQL Commands

prepare transaction SDK Release 11.5

prepare transaction

Function

Used to see if a server is prepared to commit a transaction.

Transact-SQL Syntax

prepare transaction

DB2 SQL Syntax

(No equivalent; PREPARE TRANSACTION is used)

Comments

• The prepare transaction command is passed from Adaptive Server to
a Specialty Data Store as a language event.

• There is no DB2 equivalent of this command. If the Specialty Data
Store requires DB2 syntax, the command is sent using the
Transact-SQL form.

• Adaptive Server expects the Specialty Data Store to acknowledge
the receipt of the prepare transaction command by returning a
“done” status value in srv_senddone().

• If the Specialty Data Store returns an error status, Adaptive
Server attempts to issue a rollback command to each server
involved in the transaction.

Specialty Data Store Developer’s Kit 3-21

SDK Release 11.5 readtext

readtext

Function

Reads text and image values, starting from a specified offset and
reading a specified number of bytes or characters.

Transact-SQL Syntax

readtext [[database .] owner .] table_name . column_name
text_pointer offset size
[using {bytes | chars | characters}]

DB2 SQL Syntax

(No equivalent; Transact-SQL form is sent)

Keywords and Options

table_name.column_name – the name of the text or image column must
include the table name. The database name and owner name are
optional.

text_pointer – a varbinary(16) value that stores the pointer to the text or
image data.

offset – specifies the number of bytes or characters to skip before
starting to read text or image data.

size – specifies the number of bytes or characters of data to read.

using – specifies whether readtext interprets the offset and size
parameters as a number of bytes (bytes) or as a number of
characters (chars and characters are synonymous).

Comments

• There is no DB2 equivalent of this command. If the Specialty Data
Store requires DB2 syntax, the command is sent using the
Transact-SQL form.

• Adaptive Server sends this command only if the Specialty Data
Store indicates that it supports text and image data.

3-22 SQL Commands

rollback transaction SDK Release 11.5

rollback transaction

Function

Rolls a user-defined transaction back to the beginning of the
transaction.

Transact-SQL Syntax

rollback transaction [transaction_name]

DB2 SQL Syntax

ROLLBACK WORK

Keywords and Options

transaction_name– is the name assigned to the transaction. It must
conform to the rules for identifiers.

Examples

1. rollback transaction

Comments

• The rollback transaction command is passed from Adaptive Server to
a Specialty Data Store as a language event.

• In Adaptive Server 11.5, transaction_name is not used; it is
reserved for use in a later release.

Specialty Data Store Developer’s Kit 3-23

SDK Release 11.5 select

select

Function

Retrieves rows from database objects.

Transact-SQL Syntax

select select_list
[from [[database .] owner .]{ table_name | view_name }
[,[[database .] owner .]{ table_name | view_name }]...]
[where column_name relop expression

[and column_name relop expression ...]]
[for update of column_name_list]

DB2 SQL Syntax

SELECT select_list
FROM [owner .]{ table_name | view_name }

[,[owner .]{ table_name | view_name }]...]
[WHERE column_name relop expression

[AND column_name relop expression ...]]
[FOR UPDATE OF column_name_list]

Keywords and Options

select_list – is one or more of the following items:

- A list of column names in the order in which they should be
returned.

- The constant value of “1”. For example, Adaptive Server sends
a select 1... statement to process a count if the Specialty Data Store
does not support the count aggregate.

- Optional capabilities the Specialty Data Store supports such as
aggregates and expressions.

table_name, view_name – lists tables and views used in the select
statement. If there is more than one table or view in the list, their
names are separated by commas.

Table names and view names can be given correlation names.
This is done by providing the table or view name, then a space,
then the correlation name, like this:

3-24 SQL Commands

select SDK Release 11.5

select pub_name, au_lname, au_fname
from publishers t1, authors t2

column_name– is the name of the column used in the comparison.

relop– is the keyword like, is null, or is not null, or the comparison
operator =, <>, >, <,<=, or >=.

expression – depending on how the expression handling capability is
set, expression can consist of column names, constants, operators,
parenthesis, and subqueries.

Examples

1. select pub_id, pub_name, city, state from
publishers for read only

2. select pub_name, pub_id
from publishers

3. select 1 from publishers
where city = @p1

4. select type, price
from titles where price > @p1 for update of price

5. select au_id, TEXTPTR(copy)
from blurbs where au_id = @p1

Comments

• Depending on the capabilities of the Specialty Data Store, the
select statement may also contain group by, order by, or union.

• The select command is passed from Adaptive Server to a Specialty
Data Store as a series of cursor commands:

- declare

- open

- fetch

- close

- deallocate

• Each cursor can be reused multiple times after having been
passed a new set of parameters prior to being opened.

• If the or predicate capability (105) is supported, or predicates can
be used in the where clause search conditions.

Specialty Data Store Developer’s Kit 3-25

SDK Release 11.5 select

• Data values in the where clause search conditions are passed as
cursor parameters using the datatype associated with the
column.

• Cursor parameters are indicated with a “@” when Transact-SQL
syntax is used, and with a “?” when DB2 syntax is used.

• Cursors can be opened with the following options:

- read only – indicates that the cursor is a read only cursor and no
updates are applied to rows made current by it

- update – indicates that the cursor is an updateable cursor, and
rows made current by it can be deleted or updated

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

3-26 SQL Commands

truncate table SDK Release 11.5

truncate table

Function

Removes all rows from a table.

Transact-SQL Syntax

truncate table [[database .] owner .] table_name

DB2 SQL Syntax

DELETE FROM [owner .] table_name

Keywords and Options

table_name – is the name of the table to be truncated.

Examples

1. truncate table authors

Comments

• The truncate table command is passed from Adaptive Server to a
Specialty Data Store as a language event.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

• The truncate table operation is not logged; thus, a trigger cannot be
fired as a result of a truncate operation.

• If DB2 syntax is used, the Specialty Data Store must make sure
that the statement’s work is committed since Adaptive Server
does not follow this statement with a commit work command.

Specialty Data Store Developer’s Kit 3-27

SDK Release 11.5 update (cursor)

update (cursor)

Function

Changes data in a row made current by a cursor, either by adding data
or by modifying existing data.

Transact-SQL Syntax

update [[database .] owner .]{ table_name | view_name }
set column_name1 = @p1

[, column_name2 = @p2]. ..

DB2 SQL Syntax

UPDATE [owner .]{ table_name | view_name }
SET column_name1 = ?

[, column_name2= ?] ...

Keywords and Options

table_name, view_name – is the table or view where the data will be
updated.

set – specifies the column name and assigns the new value. The value
is passed as a cursor parameter.

Examples

1. update authors
set au_lname = @p1

The row made current by the cursor authors_cursor is modified;
the column au_lname is set to the value of the parameter @p1.

Comments

• Adaptive Server issues a cursor update request if it must examine
any column’s data to fulfill the client request. This is true if:

- There is more than one table involved in the update statement

- The update statement contains built-in functions in its where
clause

- A column name is referenced in the set expression

• The update command is passed from Adaptive Server to a
Specialty Data Store as a series of cursor commands:

- declare

3-28 SQL Commands

update (cursor) SDK Release 11.5

- open

- fetch

- update

- close

- deallocate

• A where clause is not constructed. It is assumed that the Specialty
Data Store appends the equivalent of:

where current of cursor cursor_name

• The cursor can be re-used multiple times before it is deallocated.

• When the Specialty Data Store calls srv_senddone to mark the
completion of the update command, the number of rows affected
must be indicated.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-29

SDK Release 11.5 update (dynamic)

update (dynamic)

Function

Changes data in existing rows of the referenced table.

Transact-SQL Syntax

update [[database .] owner .]{ table_name | view_name }
set column_name1 = ?

[, column_name2 = ?]. ..
[where column_name relop expression

[AND column_name relop expression ...]]

DB2 SQL Syntax

UPDATE [owner .]{ table_name | view_name }
SET column_name1 = ?

[, column_name2 = ?] ...
[where column_name relop expression

[AND column_name relop expression ...]]

Keywords and Options

table_name, view_name – is the table or view where the data will be
updated.

set – specifies the column name and assigns the new value. The value
is passed as a parameter.

column_name – is the name of the column used in the comparison.

relop – is the keyword like, is null, or is not null, or the comparison
operator =, <>, >, <,<=, or >=.

expression – depending on how the expression handling capability is
set, expression can consist of column names, constants, operators,
parenthesis, and subqueries.

Examples

1. update authors
set au_lname = ?
where au_id = ?

The au_lname column is set to the value of parameter 1 where the
value of au_id is equal to the value of parameter 2.

3-30 SQL Commands

update (dynamic) SDK Release 11.5

Comments

• Adaptive Server issues a dynamic update request if it does not
have to examine any column’s data in order to fulfill the client
request. This is true if:

- There is only one table involved in the update statement

- The update statement does not contain built-in functions in its
where clause

- A column name is not referenced in the set expression

• The update command is passed from Adaptive Server to a
Specialty Data Store as a series of dynamic requests:

- prepare (define parameter formats)

- execute (with parameter data)

- deallocate

• When the Specialty Data Store calls srv_senddone to mark the
completion of the update command, the number of rows affected
must be indicated.

• Adaptive Server sends the name of the remote table that was
provided when the proxy table was defined via the sp_addobjectdef
system procedure.

Specialty Data Store Developer’s Kit 3-31

SDK Release 11.5 writetext bulk

writetext bulk

Function

Permits insert and updating of a text or image column.

Transact-SQL Syntax

writetext bulk
[[database .] owner .] table_name.column_name
text_pointer [timestamp= ts_value] [with log]

DB2 SQL Syntax

(No equivalent; Transact-SQL form is sent)

Keywords and Options

bulk - indicates that a bulk copy operation is to follow as a SRV_BULK
event.

table_name.column_name – the name of the text or image column must
include the table name. The database name and owner name are
optional.

text_pointer – a varbinary(16) value that stores the pointer to the text or
image data.

timestamp – supplies a hexadecimal value that can be used as the
timestamp for the given text or image data. This value comes from
the client that originated the writing of text or image data. The
client obtains the value from an initial query on the column. This
implies that the Specialty Data Store can supply a timestamp
value during the initial query, and use it during a writetext bulk to
ensure a matching value.

with log – a flag that indicates if the requested text or image operation
should be logged. This flag originates for the initial client request.
Typically, Specialty Data Stores do not log text or image
operations, even if this flag is supplied.

Comments

• When sending text or image data, Adaptive Server uses the Client-
Library function ct_send_data(). This function causes both language
and bulk events.

• The writetext bulk command is received within the language event.

3-32 SQL Commands

writetext bulk SDK Release 11.5

• Receipt of the writetext bulk command indicates that the Specialty
Data Store is about to receive a stream of text or image bytes. These
bytes are received within a bulk event.

• For more information on the writetext bulk command, refer to
Chapter 4, “Text and Image Handling,” and the Open Client and
Open Server Common Libraries Reference Manual.

Specialty Data Store Developer’s Kit 4-1

4 Text and Image Handling 4.

Handling of text and image datatypes within the Adaptive Server is
completely different and more complex than the handling of other
datatypes. text and image data is unique because the values can be
large. Due to the size, applications frequently request portions of a
text or image column.

Special processing to more efficiently handle text and image
datatypes is required for handling each of the following actions:

• Writing

• Reading

• Deleting

• Updating

• Pattern matching with the like keyword

• Processing the char_length function

• Processing the datalength function

• Processing the textvalid function

This chapter discusses the interaction between the Adaptive Server
and Specialty Data Stores in dealing with these functions. Other
issues discussed in this chapter include:

• Using text pointers with text and image data

• Using text timestamps with text and image data

• Transferring text and image data between Adaptive Server and a
Specialty Data Store

Supporting Text Pointers

Text pointers allow applications to manipulate a large value without
sending the entire object through the network. A text pointer is a 16-
byte handle to a text or image column in a row. Instead of returning
the entire object in a query, the text pointer value is returned instead.
An application can then use the text pointer value in a readtext or
writetext command to fetch or update the actual column value.

Specialty Data Stores have the option of supporting text pointers. If
text pointers are supported, overall performance is improved since
the Adaptive Server can rely on the Specialty Data Store to perform

4-2 Text and Image Handling

Supporting Text Timestamps SDK Release 11.5

many text and image functions. Additionally, the entire text or image
value never has to cross the network unless the client requests the
complete value.

For best performance, Specialty Data Stores should produce and
return text pointers for a given column in a given row. Conversely,
when a Specialty Data Store is given a text pointer, it must be able to
access the data the text pointer references.

If the Specialty Data Store does not support text pointers, the
Adaptive Server will always request the complete value of a text or
image column to be returned in a result set. The Adaptive Server
stores these values and manufactures its own text pointer to give to a
client. This generates a great deal of overhead in the Adaptive Server
and the network.

Specialty Data Store Support of Text Pointers

Adaptive Server requests a text and image column’s text pointer via a
select request using the textptr() function. The Specialty Data Store
returns a text pointer value that is a 16-byte binary value. The only
requirement is that the Specialty Data Store must be able to use that
text pointer value to access the column if it is returned to the
Specialty Data Store during a readtext or writetext command.

For example:

select au_fname, au_lname, textptr(copy)
from blurbs
where au_id = “409-56-7008”

When a Specialty Data Store receives this request, it must return the
following for the rows with au_id “409-56-7008” in the blurbs table:

• au_fname and au_lname columns.

• A text pointer value that points to the data in the text column copy.
The text pointer value can later be used to fetch the actual data.

For more information on selecting text and image data, see “Selecting
Data When Text Pointers Are Supported” on page 4-5.

Supporting Text Timestamps

Text timestamps mark the time of a text or image column’s last
modification. Adaptive Server does not specifically request a text
timestamp, but acquires the timestamp via Client-Library when the

Specialty Data Store Developer’s Kit 4-3

SDK Release 11.5 Specifying Text and Image Capabilities

data is fetched. The timestamp is supplied in the CS_IODESC of the
fetched value.

Adaptive Server performs no special processing on text timestamps
except to:

• Pass the supplied timestamp value from a client to a Specialty
Data Store when performing writetext or Open Client functions

• Pass the supplied timestamp value from a Specialty Data Store to
a client when performing a select or readtext

Specialty Data Stores have the option of supporting text timestamps.

Specifying Text and Image Capabilities

Specialty Data Stores indicate which text and image capabilities they
support through the sp_capabilities RPC (see “sp_capabilities” on page
5-3). These capabilities are discussed in the following sections.

Text and Image Handling

The text/image handling capability indicates if the Specialty Data
Store:

• Does not support text and image datatypes

• Supports text and image datatypes but not text pointers

• Supports text and image datatypes and text pointers

If text and image datatypes are not supported, Adaptive Server does
not allow mapping of text and image data columns to a table on that
Specialty Data Store.

If text and image datatypes are supported, but text pointers are not,
Adaptive Server processes text and image operations by first storing
the text and image data internally. Also, Adaptive Server imposes the
following limitations on Adaptive Server client operations:

• writetext is not supported

• readtext is not supported

• textptr() is not supported

• insert and update via Open Client text and image functions is not
supported

• Data length is limited to 450 bytes for insert and update

4-4 Text and Image Handling

Inserting text and image Data SDK Release 11.5

Text Pattern Handling

The text pattern handling capability indicates if a Specialty Data Store
can perform pattern matching on text data. If a Specialty Data Store
does not support this feature, Adaptive Server retrieves the data and
stores it internally during pattern matching operations.

Inserting text and image Data

When Adaptive Server inserts a row containing one or more text or
image columns, the interactions between Adaptive Server and the
Specialty Data Store depend on the action initiating the insert.

Data Inserted Based on the insert Command

When Adaptive Server inserts data because of an insert command,
Adaptive Server sends the Specialty Data Store an insert command.
Adaptive Server processes the insert via a parameterized dynamic
request, with each input value being passed as a parameter. The
length of the data using this insert method is limited to
approximately 450 bytes.

Data Inserted Based on the writetext Command

When Adaptive Server inserts data because of a writetext command,
Adaptive Server processes the insert using Client-Library’s
ct_send_data() function. The length of the data is not limited.

➤ Note
Adaptive Server performs inserts based on writetext only if the Specialty

Data Store supports text pointers.

The interactions that occur are as follows:

1. The data for the text or image column is issued by Adaptive
Server using the following Client-Library calls:

- ct_command

- ct_data_info

- ct_send_data (called multiple times in a loop)

- ct_send

Specialty Data Store Developer’s Kit 4-5

SDK Release 11.5 Selecting text and image Data

- ct_results

2. The Specialty Data Store must handle the data as described in
the Open Client and Open Server Common Libraries Reference
Manual. The handling includes the following:

- Language event: receipt of writetext bulk command

- Bulk event: obtain data via srv_text_info and srv_get_text (called
multiple times in a loop)

Selecting text and image Data

Adaptive Server selects a text or image column based on a client’s
select or readtext command. If the Specialty Data Store does not
support text pointers, Adaptive Server also selects text or image data
to perform the following:

• Pattern matching

• char_length functions

• datalength functions

Data is selected differently depending on whether the Specialty Data
Store supports text pointers.

Selecting Data When Text Pointers Are Supported

When Adaptive Server processes a select operation when text
pointers are supported, the following interactions occur:

1. Adaptive Server requests a text or image column’s text pointer
via a select request using the textptr() function. Adaptive Server
performs this automatically when the client issues a select
command. The client must request the text pointer if a readtext
command is going to be issued. The following is an example of
such a request:

select au_id, textptr(copy) from blurbs
where au_id = “409-56-7008”

2. The Specialty Data Store must return valid text pointer values
for the requested row(s). The value is a binary(16) datatype.

3. Adaptive Server issues a readtext command to the Specialty Data
Store. The command has the following syntax (see “readtext” on
page 3-21 for more information):

4-6 Text and Image Handling

Selecting text and image Data SDK Release 11.5

readtext
[[database .] owner .] table_name.column_name
text_pointer offset size
[using chars]

If size is equal to zero, the entire text or image column is being
selected.

4. The Specialty Data Store must return the requested text or image
data via the following Open Server calls:

srv_text_info
srv_send_text (called multiple times in a loop)

5. Adaptive Server retrieves the data via the following Client-
Library calls:

ct_fetch
ct_data_info
ct_get_data (called multiple times in a loop)

Selecting Data When Text Pointers Are Not Supported

When a Specialty Data Store does not support text pointers,
Adaptive Server selects the entire text or image data before processing
the following:

• select commands

• Pattern matching

• char_length functions

• datalength functions

When Adaptive Server processes the select operation, the following
interactions occur:

1. Adaptive Server requests a text or image column’s data with a
select request. The following is an example of such a request:

select au_id, copy from blurbs
where au_id = “409-56-7008”

2. The Specialty Data Store must return the requested row(s)
supplying the entire text or image data.

3. Adaptive Server retrieves the text or image data via the following
Client-Library calls and stores the data internally:

ct_fetch
ct_data_info
ct_get_data (called multiple times in a loop)

Specialty Data Store Developer’s Kit 4-7

SDK Release 11.5 Updating text and image Data

Updating text and image Data

When Adaptive Server is updating a row with one or more text or
image columns, the interactions that occur depend on the action
initiating the update.

Data Updated Based on the update Command

When Adaptive Server is updating data because of an update
command, Adaptive Server issues the Specialty Data Store an update
command. Adaptive Server processes the update using a
parameterized dynamic request, with each new value being passed
as a parameter. The length of the data is limited to approximately 450
bytes.

Data Updated Based on the writetext Command

When Adaptive Server is updating data because of a writetext
command, Adaptive Server does not perform the update via a
dynamic request, but uses Client-Library’s ct_send_data() function.
The length of the data is not limited.

➤ Note
Adaptive Server performs updates based on writetext only if the Specialty

Data Store supports text pointers.

Pattern Matching on text Data

Adaptive Server processes pattern matching on text data when
processing the pattern function and the like predicate. Adaptive Server
processes pattern matching differently depending on whether the
Specialty Data Store supports pattern matching.

Pattern Matching When Pattern Matching Is Supported

When the Specialty Data Store supports pattern matching, Adaptive
Server issues an sp_patindex RPC within a cursor event to pass the

4-8 Text and Image Handling

Processing the char_length Function SDK Release 11.5

pattern matching request to a Specialty Data Store. sp_patindex takes
the following parameters:

For more information on sp_patindex, see “sp_patindex” on page 5-11.

When Pattern Matching Is Not Supported

When the Specialty Data Store does not support pattern matching,
Adaptive Server requests the data from the Specialty Data Store,
stores the data as text data, and processes the pattern match
internally.

Processing the char_length Function

Adaptive Server processes the char_length function differently
depending on whether the Specialty Data Store supports text
pointers.

Table 4-1: sp_patindex parameters

Parameter
Name Datatype Description

database varchar(30) Input

owner varchar(30) Input

table varchar(30) Input

column varchar(30) Input

txtptr binary(16) Input; text pointer of row/column being
processed

ret_value integer Output; contains the starting position of
the first occurrence of pattern. “0” should
be returned if the pattern is not found.

pattern varchar(255) Input; pattern being searched for. The
pattern can contain Sybase pattern
matching characters (“%_”).

use_bytes integer Input; value will be greater than zero if the
pattern matching should be done on a byte
basis. Otherwise, matching should be done
on a character basis.

Specialty Data Store Developer’s Kit 4-9

SDK Release 11.5 Processing the datalength Function

Processing char_length When Text Pointers Are Supported

When the Specialty Data Store supports text pointers, Adaptive
Server relies on the Specialty Data Store to perform the char_length
function on text data. This reduces the amount of data transferred
between Adaptive Server and the Specialty Data Store.

Adaptive Server issues an sp_char_length RPC within a cursor event to
pass the char_length function to a Specialty Data Store. sp_char_length
takes the following parameters:

For more information on sp_char_length, see “sp_char_length” on page
5-6.

Processing char_length When Text Pointers Are Not Supported

When the Specialty Data Store does not support text pointers,
Adaptive Server requests the data from the Specialty Data Store,
stores the data as text data, and processes the char_length function
internally.

Processing the datalength Function

Adaptive Server processes the datalength function differently
depending on whether the Specialty Data Store supports text
pointers.

Table 4-2: sp_char_length parameters

Parameter
Name Datatype Description

database varchar(30) Input

owner varchar(30) Input

table varchar(30) Input

column varchar(30) Input

txtptr binary(16) Output; text pointer of row/column being
processed

ret_value integer Output; contains the character length

4-10 Text and Image Handling

Processing the textvalid Function SDK Release 11.5

Processing datalength When Text Pointers Are Supported

When the Specialty Data Store supports text pointers, Adaptive
Server relies on the Specialty Data Store to perform the datalength
function on text and image data. This reduces the amount of data
transferred between Adaptive Server and the Specialty Data Store.

Adaptive Server issues an sp_datalength RPC within a cursor event to
pass the datalength function to a Specialty Data Store. sp_datalength
takes the following parameters:

For more information on sp_datalength, see “sp_datalength” on page
5-10.

Processing datalength When Text Pointers Are Not Supported

When the Specialty Data Store does not support text pointers,
Adaptive Server requests the data from the Specialty Data Store,
stores the data as text data, and processes the datalength function
internally.

Processing the textvalid Function

Adaptive Server always relies on the Specialty Data Store to process
the textvalid function. If the Specialty Data Store supports text
pointers, Adaptive Server passes these requests to the Specialty Data
Store; otherwise, Adaptive Server indicates the text pointer is valid.

Table 4-3: sp_datalength parameters

Parameter Name Datatype Description

database varchar(30) Input

owner varchar(30) Input

table varchar(30) Input

column varchar(30) Input

txtptr binary(16) Input; text pointer of row/column being
processed

ret_value integer Output; contains the data length

Specialty Data Store Developer’s Kit 4-11

SDK Release 11.5 Processing the textvalid Function

When Adaptive Server can pass a textvalid function to a Specialty Data
Store, it passes the function by issuing an sp_textvalid RPC within a
cursor event. sp_textvalid takes the following parameters:

For more information on sp_textvalid, see “sp_textvalid” on page 5-17.

Table 4-4: sp_textvalid parameters

Parameter Name Datatype Description

database varchar(30) Input

owner varchar(30) Input

table varchar(30) Input

column varchar(30) Input

txtptr binary(16) Input; text pointer of row/column
being processed

ret_value integer Output; set to “1” if the text pointer is
valid; otherwise, set to “0”

4-12 Text and Image Handling

Processing the textvalid Function SDK Release 11.5

Specialty Data Store Developer’s Kit 5-1

5 System and Catalog RPCs 5.

Overview

This chapter consists of reference pages, presented in alphabetical
order, which discuss specific RPCs issued by Adaptive Server to
Specialty Data Stores.

The following table lists the RPCs discussed in this chapter.

Introduction to Catalog Procedures

This section lists the catalog RPCs alphabetically. These RPCs also
exist in the Adaptive Server, as a uniform catalog interface for
accessing database gateways. Catalog RPCs return data dictionary
information in table form.

The Specialty Data Store must implement four of these RPCs:
sp_capabilities, sp_columns, sp_statistics, and sp_tables. The others may
need to be implemented to support capabilities specified thru
sp_capabilities.

Table 5-1: Command RPCs

RPC Description

sp_capabilities Show the capabilities of the Specialty Data Store

sp_char_length Determine the number of characters in text referenced
by textptr

sp_columns Show names and attributes of all columns associated
with the table or view

sp_datalength Determine the length of text data referenced by textptr, in
bytes

sp_patindex Determine the character position in text field of the
beginning of the supplied pattern

sp_statistics Show index attributes for a given table

sp_tables Show attributes of a given table, or all tables

sp_textvalid Determine whether or not a supplied textptr is still valid

sp_thread_props Show/modify attributes of Adaptive Server’s
connection to the Specialty Data Store

5-2 System and Catalog RPCs

Introduction to Catalog Procedures SDK Release 11.5

Syntax and Optional Parameters

The syntax is provided in expanded form because many of these
procedures have more optional parameters, and in many cases it is
more convenient to supply the parameters in the form:

@parametername = value

than to supply all of the parameters. The parameter names in the
syntax statements match the parameter names defined by the
procedures.

For example, here is the syntax for sp_columns:

sp_columns table_name [, table_owner]
[, table_qualifier] [, column_name]

If you need to use sp_columns to find information about a particular
column, you can use:

sp_columns @table_name = publishers,
@column_name = "pub_id"

This provides the same information as the command with all of the
parameters specified:

sp_columns publishers, "dbo", "pubs2", "pub_id"

You can also use "null" as a placeholder:

sp_columns publishers, null, null, "pub_id"

➤ Note
Adaptive Server sends RPC parameters by position only, and never uses

names to identify parameters.

Specialty Data Store Developer’s Kit 5-3

SDK Release 11.5 sp_capabilities

sp_capabilities

Function

Used to determine the capabilities of the Specialty Data Store.

Syntax

sp_capabilities

Parameters

None.

Comments

• sp_capabilities is mandatory for all implementations of a Specialty
Data Store. It is used by Adaptive Server to determine the
functional capabilities of the Specialty Data Store.

• If the RPC returns a status of 0, Adaptive Server assumes the RPC
completed successfully.

• If the RPC fails to return a status or returns a status other than 0,
Adaptive Server assumes the RPC did not complete successfully.

• The only reason an error is generated as a result of executing this
RPC is to describe an operating system or an Open Server error.

• The result set must contain sufficient information to allow
Adaptive Server to successfully interact with the Specialty Data
Store during normal query processing. The following table lists
the format of the result set (refer to “Specialty Data Store
Capabilities” on page 2-8 for a more detailed explanation of the
capabilities):

Table 5-2: sp_capabilities result set

ID Capability Name Value

101 sql syntax 1 = Transact-SQL; 2 = DB2

102 join handling 0 = unsupported; 1 = no outer join; 2 = Transact-
SQL support level; 3= Oracle support level

103 aggregate handling 0 = unsupported; 1 = ANSI SQL support level; 2
= Transact-SQL support level

104 and predicates 0 = unsupported; 1 = supported

105 or predicates 0 = unsupported; 1 = supported

5-4 System and Catalog RPCs

sp_capabilities SDK Release 11.5

106 like predicates 0 = unsupported; 1 = ANSI-style supported; 2 =
Transact-SQL-style supported

107 bulk insert handling 0 = unsupported; 1 = supported

108 text/image handling 0 = unsupported; 1 = text without textptr; 2 =
text with textptr

109 transaction handling 0 = unsupported; 1 = local transactions
supported

110 text pattern handling 0 = unsupported; 1 = supported

111 order by 0 = unsupported; 1 = supported

112 group by 0 = unsupported; 1 = ANSI SQL compatible; 2 =
Transact-SQL compatible

113 net password encryption 0 = unsupported; 1 = supported

114 object name case sensitivity 0 = case insensitive; 1 = case sensitive

115 distinct 0 = unsupported; 1 = supported

117 union 0 = unsupported; 1 = supported

118 string functions 0 = unsupported; 1 = substr() function
supported; 2 = substr(), lower(), ltrim(), rtrim(), and
upper() functions supported; 3 = Transact-SQL
string functions supported

119 expression handling 0 = unsupported; 1 = ANSI SQL expressions; 2
= Transact-SQL expressions

120 truncate blanks 0 = do not truncate trailing blanks; 1 = truncate
trailing blanks

121 language handling 0 = transaction control, readtext, writetext and
DDL statements supported; 1 = all queries
supported except those containing dates; 2 = all
queries supported

122 date functions 0 = unsupported; 1 = Transact-SQL date
functions supported

123 math functions 0 = unsupported; 1 = abs, cos, exp, floor, power,
round, sign, sin, sqrt, tan supported; 2 = Transact-
SQL math functions supported

124 convert function 0 = unsupported; 1 = supported

125 T-SQL delete/update 0 = multiple tables not supported; 1 = multiple
tables supported

Table 5-2: sp_capabilities result set

ID Capability Name Value

Specialty Data Store Developer’s Kit 5-5

SDK Release 11.5 sp_capabilities

126 insert select 0 = unsupported; 1 = ANSI SQL insert select; 2 =
Transact-SQL insert select

127 subquery support 0 = unsupported; 1 = ANSI SQL subquery
support; 2 = Transact-SQL subquery support

Table 5-2: sp_capabilities result set

ID Capability Name Value

5-6 System and Catalog RPCs

sp_char_length SDK Release 11.5

sp_char_length

Function

Determines the number of characters in the text data associated with
the textptr. The result may be different than that returned by
sp_datalength, if multi-byte characters are in use.

Syntax

sp_char_length [table_qualifier,][owner,] table,
column, txtptr, ret_value

Parameters

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

owner– varchar(30) – the name of the object owner.

table – varchar(30) – the name of the object containing the text column.

column – varchar(30) – the name of the text column within table.

txtptr – binary(16) – a Specialty Data Store-specific handle for
identifying text data.

ret_value – int – the output parameter in which character count is
placed.

Comments

• This RPC will only be issued if the Specialty Data Store supports
text and image text pointers.

• sp_char_length is used for text and image processing to handle the
char_length() function. See “Processing the char_length Function”
on page 4-8 for more information.

• The character length should be returned in the ret_value
parameter.

• If the RPC returns a status of 0, Adaptive Server assumes that the
RPC completed successfully.

• If the RPC returns a status other than 0, Adaptive Server assumes
the RPC did not complete successfully.

Specialty Data Store Developer’s Kit 5-7

SDK Release 11.5 sp_columns

sp_columns

Function

Returns column information for a single object that can be queried in
the current DBMS environment. The returned columns belong to
either a table or a view.

Syntax

sp_columns table [, owner] [, table_qualifier]
[, column_name]

Parameters

table – varchar(30) – the name of the object containing the columns.

owner– varchar(30) – the name of the object owner. If the parameter is
not specified, sp_columns should use the default rules of the
underlying DBMS to determine which table’s columns to return.
Support of this parameter is mandatory.

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

column_name – varchar(30) – the name of a column in the table.
Support for this parameter is optional.

Comments

• If the specified table does not exist, an empty result set should be
returned.

• The following table shows the results set:

5-8 System and Catalog RPCs

sp_columns SDK Release 11.5

Table 5-3: Results set for sp_columns

Column Datatype Description

table_qualifier varchar(30) This column supports three-part naming in
various DBMS products, which means tables
can be directly identified and queried using a
unique three-part name. This column
represents the database portion of the three-
part name.

table_owner varchar(30) This column represents the owner portion of
the three-part name.

table_name varchar(30) This column represents the table or view
name portion of the three-part name. This
field cannot be NULL.

column_name varchar(30) This field cannot be NULL.

data_type smallint Integer code for ODBC datatype (see “ODBC
Datatypes” on page 5-19). The native datatype
name is returned in the type_name column.
This field cannot be NULL.

type_name varchar(30) String representing a datatype. The
underlying DBMS presents this datatype
name.

precision int Number of significant digits.

length int Length in bytes of a datatype. This field
cannot be NULL.

scale smallint Number of digits to the right of the decimal
point.

radix smallint Base for numeric types.

nullable smallint The value “1” means NULL is possible; “0”
means NOT NULL.

remarks varchar(254)

ss_data_type smallint A number representing the Adaptive Server
datatype that this column is being mapped to
(see “Adaptive Server Datatypes” on page
5-20). When a create existing table statement is
executed, this column is compared to the
column definition in the create existing table
statement and must match.

Specialty Data Store Developer’s Kit 5-9

SDK Release 11.5 sp_columns

colid tinyint A number uniquely defining the column
within the table. It should be ascending based
on the order of columns in the create table
statement.

remote_data_type int A number representing the underlying
DBMS’s datatype. The meaning of this value
is defined by the Specialty Data Store only. It
is only stored by the Adaptive Server.

Table 5-3: Results set for sp_columns (continued)

Column Datatype Description

5-10 System and Catalog RPCs

sp_datalength SDK Release 11.5

sp_datalength

Function

Obtains the length of text data, in bytes, referenced by the text pointer.

Syntax

sp_datalength [table_qualifier,][owner,] table,
column, txtptr, ret_value

Parameters

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

owner – varchar(30) – the name of the object owner.

table – varchar(30) – the name of the object containing the text column.

column – varchar(30) – the name of the text column within table.

txtptr – binary(16) – a Specialty Data Store-specific handle for
identifying text data.

ret_value – int – the output parameter in which the character count is
placed.

Comments

• This RPC will only be issued if the Specialty Data Store supports
text and image text pointers.

• sp_datalength is used for text and image processing to handle the
datalength() function. See “Processing the datalength Function” on
page 4-9 for more information.

• The data length should be returned in the ret_value parameter.

• If the RPC returns a status of 0, Adaptive Server assumes that the
RPC completed successfully.

• If the RPC returns a status other than 0, Adaptive Server assumes
that the RPC did not complete successfully.

Specialty Data Store Developer’s Kit 5-11

SDK Release 11.5 sp_patindex

sp_patindex

Function

Finds the character position in a text column that contains the
supplied pattern.

Syntax

sp_patindex [table_qualifier,][owner,] table,
column, pattern, ret_value

Parameters

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

owner – varchar(30) – the name of the object owner.

table – varchar(30) – the name of the object containing the text column.

column – varchar(30) – the name of the text column within table.

ret_value – int – the output parameter containing the character offset
of the start of the pattern.

pattern – varchar(255) – the pattern on which to search. The pattern
can contain Sybase pattern matching characters.

use_bytes – int – if supplied as “0”, sp_patindex should return the offset
in characters; otherwise, the offset should be returned in bytes.

Comments

• This RPC will only be issued if the Specialty Data Store supports
text and image text pointers and text pattern handling.

• Used for text and image processing to handle the patindex() function
and the like clause. See “Pattern Matching on text Data” on page
4-7 for more information.

• An integer value representing the starting position of the first
occurrence of pattern in the specified column’s data should be
returned in the ret_value parameter. “0” should be returned if
pattern is not found.

5-12 System and Catalog RPCs

sp_patindex SDK Release 11.5

• If the RPC returns a status of 0, Adaptive Server assumes that the
RPC completed successfully.

• If the RPC returns a status other than 0, Adaptive Server assumes
that the RPC did not complete successfully.

Specialty Data Store Developer’s Kit 5-13

SDK Release 11.5 sp_statistics

sp_statistics

Function

Returns a list of all indexes on a single table, determined by the
table_qualifier, table_owner, and table_name parameters.

Syntax

sp_statistics table [, owner]
[, table_qualifier] [, index_name] [, is_unique]

Parameters

table – varchar(30) – the name of the object containing the index.

owner – varchar(30) – the name of the object owner. If the parameter is
not specified, sp_statistics should use the default rules of the
underlying DBMS to determine which table’s index to return.
Support of this parameter is mandatory.

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

index_name – the index name. Support for this parameter is optional.

is_unique – the indexes to be returned. Enter “y” if only unique
indexes are to be returned. Support for this parameter is optional.

Comments

• If the specified table does not exist, an empty result set should be
returned.

• The following table shows the results set:

Table 5-4: Results set for sp_statistics

Column Datatype Description

table_qualifier varchar(32) This column supports three-part naming in
various DBMS products, which means tables
can be directly identified and queried using a
unique three-part name. This column
represents the database portion of the three-
part name.

5-14 System and Catalog RPCs

sp_statistics SDK Release 11.5

• The indexes in the results set should appear in ascending order
by the columns non_unique, type, index_name, and seq_in_index.

• The index type clustered refers to an index in which the data in the
table is stored in the order of the index. This corresponds to
Adaptive Server clustered indexes.

table_owner varchar(32) This column represents the owner portion of
the three-part name.

table_name varchar(32) This column represents the table or view
name portion of the three-part name. This
field cannot be NULL.

non_unique smallint The value ”0” means unique, and “1” means
not unique. This field cannot be NULL.

index_qualifier varchar(30)

index_name varchar(32) This field cannot be NULL.

type smallint The value “0” means statistics for a table, “1”
means clustered, “2” means hashed, and “3”
means other. This field cannot be NULL.

seq_in_index smallint This field cannot be NULL.

column_name varchar(32) This field cannot be NULL.

collation char(1) The value “A” means ascending, “D” means
descending, and “NULL” means not
applicable. Adaptive Server ignores
descending indexes.

cardinality int Number of rows in the table or unique values
in the index.

pages int Number of pages needed to store the index or
table.

Table 5-4: Results set for sp_statistics (continued)

Column Datatype Description

Specialty Data Store Developer’s Kit 5-15

SDK Release 11.5 sp_tables

sp_tables

Function

Returns a list of objects that can be queried in the current DBMS
environment, that is, any object that can appear in a from clause.

Syntax

sp_tables [table] [, owner]
[, table_qualifier][, table_type]

Parameters

table – varchar(30) – the name of the specific object.

owner – varchar(30) – the name of the object owner.

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

table_type – a list of values, separated by commas, giving
information about all tables of the table type(s) specified,
including the following:

"’TABLE’, ’SYSTEM TABLE’, ’VIEW’"

 For example:

sp_tables @table_type = "'TABLE', 'VIEW'"

This procedure returns information about all tables in the
current database of the type TABLE and VIEW and excludes
information about system tables.

Support for this parameter is optional.

➤ Note
Single quotation marks must surround each table type, and double

quotation marks must enclose the entire parameter. Table types must be

entered in uppercase.

5-16 System and Catalog RPCs

sp_tables SDK Release 11.5

Comments

• If the specified table does not exist, an empty result set should be
returned.

• The following table shows the results set:

Table 5-5: Results set for sp_tables

Column Datatype Description

table_qualifier varchar(30) This column supports three-part naming in
various DBMS products, which means
tables can be directly identified and queried
using a unique three-part name. This
column represents the database portion of
the three-part name.

table_owner varchar(30) This column represents the owner portion
of the three-part name.

table_name varchar(30) This column represents the table or view
name portion of the three-part name. This
field cannot be NULL.

table_type varchar(32) One of the following: “TABLE”, “VlEW”,
“SYSTEM TABLE”, “SYNONYM”, “ALIAS”
(Adaptive Server does not support
“SYNONYM” and “ALIAS”). This field
cannot be NULL.

remarks varchar(254)

Specialty Data Store Developer’s Kit 5-17

SDK Release 11.5 sp_textvalid

sp_textvalid

Function

Determines whether a given text pointer is valid.

Syntax

sp_textvalid [table_qualifier,][owner,] table,
column, txtptr, ret_value

Parameters

table_qualifier – varchar(30) – the database portion or first-part of a
three-part name. Adaptive Server supports three-part naming in
various DBMS products, which means tables can be directly
identified and queried using a three-part name. Support for this
parameter is mandatory.

owner – varchar(30) – the name of the object owner.

table – varchar(30) – the name of the object containing the text column.

column – varchar(30) – the name of the text column within table.

txtptr – binary(16) – a Specialty Data Store-specific handle for
identifying text data.

ret_value – int – the output parameter in which “1” is returned for a
valid text pointer and “0” is returned for an invalid text pointer.

Comments

• sp_textvalid is only issued if the Specialty Data Store supports text
and image text pointers.

• sp_textvalid is used for text and image processing to handle the
textvalid() function. See “Processing the textvalid Function” on
page 4-10 for more information.

• The validity of the text pointer should be returned in the ret_value
parameter – “1” for valid, “0” for invalid.

• If the RPC returns a status of “0”, Adaptive Server assumes that
the RPC completed successfully.

• If the RPC returns a status other than “0”, Adaptive Server
assumes that the RPC did not complete successfully.

5-18 System and Catalog RPCs

sp_thread_props SDK Release 11.5

sp_thread_props

Function

Enables a client to show or set various thread properties supported by
the Specialty Data Store.

Syntax

sp_thread_props [property_name [, property_value]]

Parameters

property_name – the name of the thread property to be set or shown.

property_value – the value to which the thread property is to be set.

Comments

• In Adaptive Server 11.5, this RPC is used to set or reset the
passthrough mode property only.

• If no parameters are given, a list of all properties and their current
values is returned.

• If only property_name is given, only the value of that property is
shown.

• If property_value is given, property_name must also be given.

• The passthrough mode property can be set to “1” (entering
passthrough mode) or “0” (exiting passthrough mode).

• If no parameters are given, or only property_name is given, a
single result set consisting of property name(s) and value(s) is
returned.

• If the RPC returns a status of “0”, Adaptive Server assumes that
the RPC completed successfully.

• If the RPC returns a status other than “0”, Adaptive Server
assumes that the RPC did not complete successfully.

Specialty Data Store Developer’s Kit 5-19

SDK Release 11.5 ODBC Datatypes

ODBC Datatypes

Following are the datatype code numbers and matching datatype
names that are returned in the data_type column for sp_columns. The
source for the description is the Open Database Connectivity API.

Table 5-6: ODBC datatype codes

Name Type
char 1
decimal 3
double precision 8
float 6
integer 4
numeric 2
real 7
smallint 5
varchar 12

Table 5-7: ODBC extended datatype codes

Name Type
binary (bit datatype) -2
bigint -5
bit -7
date 9
long varbinary -4
long varchar -1
time 10
timestamp 11
tinyint -6
varbinary (bit varying datatype) -3

5-20 System and Catalog RPCs

Adaptive Server Datatypes SDK Release 11.5

Adaptive Server Datatypes

Following are the datatype code numbers and matching datatype
names that are returned in the ss_data_type column for sp_columns.

Table 5-8: Adaptive Server datatype codes

Name Type
binary 0x2D
bit 0x32
char 0x2F
small datetime 0x3A
datetime 0x3D
decimal 0x6A
float 0x3E
real 0x3B
image 0x22
tinyint 0x30
smallint 0x34
int 0x38
smallmoney 0x7A
money 0x3C
numeric 0x6C
text 0x23
varbinary 0x25
varchar 0x27

Specialty Data Store Developer’s Kit Index-1

Index

Symbols
, (comma)

in SQL statements xv
{} (curly braces) in SQL statements xv
... (ellipsis) in SQL statements xvii
() (parentheses)

in SQL statements xv
[] (square brackets)

in SQL statements xv

A
access.c file 1-8
access.c source code 1-10
Administrative remote procedure

calls 2-16
Aggregate handling capability 2-8
alter table command 3-3

datatype compatibility 2-24
and predicates capability 2-9
APPDEFINED negotiated logins 2-7
attention.c source code 1-9
Attention events 1-15

attention.c source code 1-9

B
begin transaction command 3-5
Brackets. See Square brackets []
Building a Specialty Data Store

connect to command 1-13
data definition language 1-15
insert, update, and delete

commands 1-14
read-only access 1-14
table definition 1-13
text and image handling 1-15
transaction management 1-15

bulk.c source code 1-9
Bulk copy handling 2-18

Bulk events 1-15
bulk.c source code 1-9
bulk copy handling 2-18
bulk copy initialization 2-19
bulk insert into table 2-18
bulk transfer 2-19
text and image bulk copy 2-20

bulk insert handling capability 2-10

C
Calculated data columns 1-3
Capabilities

See also sp_capabilities system procedure
aggregate handling 2-8
and predicates 2-9
bulk insert handling 2-10
convert function 2-14
date functions 2-13
distinct handling 2-11
expression handling 2-12
group by 2-11
insert select 2-14
join handling 2-8
language handling 2-13
like predicates 2-9
math functions 2-13
net password encryption 2-11
object name case sensitivity 2-11
order by 2-11
or predicates 2-9
sample parser support of 1-11
security 2-7
SQL syntax 2-8
string functions 2-12
subquery support 2-14
text and image handling 2-10, 4-3
text pattern handling 2-10, 4-4
transaction handling 2-10
Transact-SQL delete/update 2-14
truncate blanks 2-13

Index-2

SDK Release 11.5

union support 2-12
when capability not supported 1-4

Case sensitivity 2-11
in SQL xvi

Catalog remote procedure calls 2-16
Catalog stored procedures

implementing 1-8
CHALLENGE negotiated logins 2-7
char_length function 4-8
client.c source code 1-9
CLIENT structure 1-8

client.c source code 1-9
Columns, calculated data 1-3
Comma (,)

in SQL statements xv
Commands

See also Individual command names
cursor 1-16
dynamic 1-17

commit transaction command 3-6
Communicating with Adaptive

Server 2-8
config.c source code 1-9
Configuration

defining remote servers 2-1
defining remote tables 2-3
verifying Adaptive Server

configuration 2-3
Configuration file 1-6

client.c source code 1-9
sample 1-11

connect.c source code 1-9
Connect events 1-16

connect.c source code 1-9
Connect handling 2-5

connection properties 2-6
Connections

CLIENT structures 1-9
closing 1-10
passthrough, establishing 1-13
passthrough mode 2-23
SRV_CONNECT event 1-16
SRV_DISCONNECT event 1-17
verifying connection to servers 2-3

connect to command
building 1-13

Conventions
See also Syntax
Transact-SQL syntax xv to xvii

convert function capability 2-14
create existing table command 2-5

datatype compatibility 2-24
create index command 3-7
create table command 2-5, 3-9

datatype compatibility 2-24
Creating tables 2-5
CS_DATAFMT structure 2-25
ct_send_data function 2-20
Curly braces ({}) in SQL statements xv
Cursor commands 1-16
Cursor event handler

implementing 1-14
Cursor events 1-16

cursors.c source code 1-9
implementing 1-14

Cursor handling
SQL commands 2-17

cursors.c source code 1-9
CURSOR structure 1-9

D
Data, read-only 1-4
Database tables

creating 2-5
Data definition language 1-4
Data structures

CLIENT 1-8
CS_DATAFMT 2-25
CURSOR 1-9
PARSBLK 1-9, 1-12

Datatypes
compatibility 2-23
create existing table 2-24
create table or alter table 2-24
DML statements 2-24
ODBC 5-19, 5-20
Result rows 2-25

Specialty Data Store Developer’s Kit Index-3

SDK Release 11.5

text and image handling 4-1
Date functions capability 2-13
DDL. See Data definition language
Debugging 1-18
Defining tables

implementing 1-13
delete (cursor) command 3-11
delete (dynamic) command 3-13
delete command

handling 2-21
implementing 1-14

delete from clause
support of 2-14

Designing a model 1-3
disc.c source code 1-10
Disconnect event handler

disc.c source code 1-10
Disconnect events 1-17
distinct handling capability 2-11
DML statements

datatype compatibility 2-24
drop index command 3-15
drop table command 3-16
dynamic.c source code 1-10
Dynamic events 1-17

dynamic.c source code 1-10
handling 2-18
implementing 1-14

E
Ellipsis (...) in SQL statements xvii
Encrypted passwords 2-7
ENCRYPT negotiated logins 2-7
Environment variable, SYBASE 1-5
error.c source code 1-10
Error handler

error.c source code 1-10
Error handling 2-25
Events

dynamic event handling 2-18
language 2-15
SRV_ATTENTION 1-15
SRV_BULK 1-15, 2-18

SRV_CONNECT 1-16
SRV_CURSOR 1-16
SRV_DISCONNECT 1-17
SRV_DYNAMIC 1-17
SRV_LANGUAGE 1-18
SRV_RPC 1-18

Example
Specialty Data Store 1-2, 1-3

Expression handling capability 2-12
External data

creating a view 1-3

F
fileio.c source code 1-10
Files

access.c 1-8
manipulating with fileio.c source

code 1-10
parser 1-12
procs.c 1-8

G
globals.c source code 1-10
Global variables

globals.c source code 1-10
group by capability 2-11

H
hash.c source code 1-10

I
image handling. See text and image

handling
insert (dynamic) command 3-17
insert bulk command 3-19
insert command

implementing 1-14
insert select capability 2-14

Index-4

SDK Release 11.5

Installing the sample Specialty Data
Store 1-5

J
Join handling capability 2-8

K
Kit for Specialty Data Store 1-1

L
lang.c source code 1-10
Language event handler

implementing 1-13
Language events 1-18, 2-15

lang.c source code 1-10
SQL commands 2-15
in transaction management 2-22

Language handling 2-15
Language handling capability 2-13
LEX code 1-12
like predicates

capability 2-9
special characters 2-9

Logging into remote servers 2-3
overriding default 2-3

Logins, negotiated 2-7
Logins, non-negotiated 2-6

M
main.c source code 1-9
Mapping

text pointers 1-10
Math functions capability 2-13
Messaging 2-25
Models

designing 1-3
sample Specialty Data Store 1-5

N
Negotiated logins 2-7
Net password encryption 2-7

capability 2-11
Non-negotiated logins 2-6

O
Object name case sensitivity

capability 2-11
ODBC datatypes 5-19
order by capability 2-11
or predicates capability 2-9

P
Parentheses ()

in SQL statements xv
PARSBLK structure 1-9, 1-12
Parser

sample 1-11 to 1-12
parser.h file 1-12
parser.l file 1-12
parser.y file 1-12
Parser files 1-12
Passthrough connections 1-13
Passthrough mode 2-23
Passwords, encrypted 2-7
patindex function 2-10
prepare transaction command 3-20
Processing requests 1-11
procs.c file 1-8
procs.c source code 1-10
Properties

connection 2-6
srv_thread_props 2-6

Q
Query processing

access.c source code 1-10

Specialty Data Store Developer’s Kit Index-5

SDK Release 11.5

R
Read-only access

implementing 1-14
Read-only data 1-4
readtext command

with isql utility 1-8
3-21

related documents xiii
Remote procedure call events 1-18

rpc.c source code 1-10
Remote procedure calls 2-15

administrative 2-16
text and image handling 2-16
user-generated 2-17

Remote server definitions
classes supported 2-2

Remote servers
defining 2-1
defining storage location 2-3
logging into 2-3

Remote table definition
mapping to Adaptive Server 2-3

Remote tables
associating with local table name 2-3

Result rows datatype compatibility 2-25
rollback transaction command 3-22
rpc.c source code 1-10
RPCs

Administrative RPCs 2-16
list of system and catalog RPCs 5-1
optional parameters 5-2
syntax 5-2

S
Sample Specialty Data Store 1-5

accessing data 1-7
code 1-8
configuration file 1-11
data structures 1-8 to 1-9
installing 1-5
model 1-5
modules 1-9 to 1-10
parser 1-11 to 1-12

sds server class 2-2
SECLABEL negotiated logins 2-7
Security capability 2-7
select command 3-18, 3-23

implementing 1-14
Server class 2-2
Source code 1-9 to 1-10
sp_addexternlogin system procedure 2-3
sp_addobjectdef system procedure 2-3
sp_addserver system procedure 2-2
sp_capabilities system procedure 2-8, 5-3

implementing 1-13
sp_char_length system procedure 5-6
sp_columns system procedure 5-7

implementing 1-14
sp_datalength system procedure 4-10, 5-10
sp_defaultloc system procedure 2-4
sp_patindex system procedure 5-11
sp_statistics system procedure 5-13

implementing 1-14
sp_tables system procedure 5-15

implementing 1-14
sp_textvalid system procedure 5-17
sp_thread_props system procedure 2-20,

5-18
implementing 1-13

Specialty Data Store
connection properties 2-6
debugging 1-18
defined 1-1
example 1-2, 1-3
interacting with Adaptive Server 2-1
managing transactions 2-22
supporting user generated

requests 2-15
Specialty Data Store, sample 1-5

accessing data 1-7
code 1-8
configuration file 1-11
data structures 1-8 to 1-9
installing 1-5
model 1-5
modules 1-9 to 1-10
parser 1-11 to 1-12

Index-6

SDK Release 11.5

Specialty Data Store Developer’s Kit 1-1
SQL commands

See also Individual command names
language events 2-15
list of commands 3-1

sqlpars.c file 1-12
SQL syntax capability 2-8
Square brackets []

in SQL statements xv
SRV_ATTENTION event 1-15
SRV_BULK event 1-15

bulk copy handling 2-18
bulk copy initialization 2-19
bulk insert into table 2-18
bulk transfer 2-19
text and image bulk copy 2-20

SRV_CONNECT event 1-16
SRV_CURSOR event 1-16
SRV_DISCONNECT event 1-17
SRV_DYNAMIC event 1-17
SRV_LANGUAGE event 1-18
SRV_RPC event 1-18
SRV_T_APPLNAME property 2-6
SRV_T_LOCALE property 2-6
SRV_T_PWD property 2-6
SRV_T_RMTSERVER property 2-6
SRV_T_USER property 2-6
srv_thread_props 2-6
Storage location

defining 2-3
defining for all database objects 2-4
of individual objects 2-3

String functions capability 2-12
Structures

CLIENT 1-8
CS_DATAFMT 2-25
CURSOR 1-9
PARSBLK 1-9, 1-12

Subquery support capability 2-14
Syntax conventions, Transact-SQL xv to

xvii
System procedures. See Individual

procedure names

T
Table definitions

implementing 1-13
Tables

creating 2-5
text and image handling

bulk copy 2-20
datalength 4-9
implementing 1-15
inserting text and image data 4-4
pattern matching on text data 4-7
remote procedure calls 2-16
selecting text and image data 4-5
textvalid function 4-10
updating text and image data 4-7

text and image handling capability 2-10
textdirectory configuration parameter 1-6
Text pattern handling capability 2-10
Text pointers 4-1

mapping 1-10
Text timestamps 4-2
textvalid function 4-10
Thread properties 2-20
Transaction handling capability 2-10
Transaction management 2-22
Transact-SQL commands 3-1 to 3-32
Transact-SQL delete/update

capability 2-14
Truncate blanks capability 2-13
truncate table command 3-26

U
union support capability 2-12
update (cursor) command 3-27
update (dynamic) command 3-29
update command

handling 2-21
implementing 1-14
support of 2-14

User-generated remote procedure
calls 2-17

Specialty Data Store Developer’s Kit Index-7

SDK Release 11.5

V
Views of external data 1-3

W
writetext command

with isql utility 1-8
writetext bulk command 3-31

Y
YACC code 1-12

Z
zpars.c file 1-12
zpars.h file 1-12

Index-8

SDK Release 11.5

